Abstract

Applications using millimeter wave (mmW) and THz radiation have increased during the past few years. One of the principal applications of these technologies is the detection and identification of objects buried beneath the soil, in particular land mines and unexploded ordnances. A novel active mmW scanning imaging system was developed for this purpose. It is a hyperspectral system that collects images at different mmW frequencies from 90  to  140  GHz using a vector network analyzer collecting backscattering mmW radiation from the buried sample. A multivariate statistical method, principal components analysis, is applied to extract useful information from these images. This method is applied to images of different objects and experimental conditions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. "Landmines Fact Sheet," United Nations Mine Clearance and Policy Unit, Department of Humanitarian Affairs, United Nations, September 1997, http://www.un.org/Pubs/CyberSchoolBus/banmines/facts.asp.
  2. K. Kowalenko, "Saving lives, one land mine at a time," The Institute 28, 10-11 (2004).
  3. M. Acheroy, "Mine action: status of sensor technology for close-in and remote detection of antipersonnel mines," in Proceedings of the Third International Workshop on Advanced Ground Penetrating Radar (Delft, Netherlands, 2005), pp. 3-13.
    [CrossRef]
  4. M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.
  5. L. Yujiri, B. Hauss, and M. Shoucri, "Passive millimeter wave sensors for detection of buried mines," in Detection Technologies for Mines and Minelike Targets, A. Dubey, I. Cindrich, J. Ralston, and K. Rigano, eds., Proc. SPIE 2496, 2-6 (1995).
    [CrossRef]
  6. H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
    [CrossRef]
  7. T. W. Du Bosq, R. E. Peale, and G. D. Boreman, "Terahertz/millimeter wave characterizations of soils for mine detection: transmission and scattering," IEEE Trans. Geosci. Remote Sens. (submitted for publication, 2005).
  8. X. Miao, M. R. Azimi-Sadjadi, B. Tian, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Trans. Neural Netw. 9, 454-463 (1998).
    [CrossRef]
  9. M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Stricker, "Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator," IEEE Trans. Instrum. Meas. 41, 137-143 (1992).
    [CrossRef]
  10. B. Karlsen, J. Larsen, H. B. D. Sorensen, and K. B. Jakobsen, "Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection," in Proceedings of IEEE Conference on Statistical Signal Processing (IEEE 2001), pp. 146-149.
  11. "Landmine Data Sheet," National Defence Mine/Countermine Information Centre, The Department of National Defence, August 2005, http://ndmic-cidnm.forces.gc.ca.
  12. D. F. Morrison, Multivariate Statistical Methods, 3rd ed. (McGraw-Hill 1990).
  13. J. M. Lopez-Alonso, J. Alda, and E. Bernabeu, "Principal components characterization of noise for infrared images," Appl. Opt. 41, 320-331 (2002).
    [CrossRef] [PubMed]
  14. J. Kositsky, R. Cosgrove, C. Amazeen, and P. Milanfar, "Results from a forward-looking GPR mine detection system," in Detection and Remediation Technologies for Mines and Minelike Targets VII, J. T. Broach, R. S. Harmon, and G. J. Dobeck, eds., Proc. SPIE 4742, 206-217 (2002).
    [CrossRef]
  15. W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
    [CrossRef]
  16. J. M. Lopez-Alonso, B. Monacelli, J. Alda, and G. Boreman, "Uncertainty analysis in the measurement of the spatial responsivity of infrared antennas," Appl. Opt. 44, 4557-4568 (2005).
    [CrossRef] [PubMed]
  17. J. M. Lopez-Alonso, J. M. Rico-Garcia, and J. Alda, "Photonic crystal characterization by FDTD and principal component analysis," Opt. Express 12, 2176-2186 (2004).
    [CrossRef] [PubMed]
  18. D. Schumaker, J. Wood, and C. Thacker, Infrared Imaging Systems Analysis (DCS Corporation, 1998).

2005 (2)

W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
[CrossRef]

J. M. Lopez-Alonso, B. Monacelli, J. Alda, and G. Boreman, "Uncertainty analysis in the measurement of the spatial responsivity of infrared antennas," Appl. Opt. 44, 4557-4568 (2005).
[CrossRef] [PubMed]

2004 (3)

J. M. Lopez-Alonso, J. M. Rico-Garcia, and J. Alda, "Photonic crystal characterization by FDTD and principal component analysis," Opt. Express 12, 2176-2186 (2004).
[CrossRef] [PubMed]

K. Kowalenko, "Saving lives, one land mine at a time," The Institute 28, 10-11 (2004).

H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
[CrossRef]

2002 (2)

J. Kositsky, R. Cosgrove, C. Amazeen, and P. Milanfar, "Results from a forward-looking GPR mine detection system," in Detection and Remediation Technologies for Mines and Minelike Targets VII, J. T. Broach, R. S. Harmon, and G. J. Dobeck, eds., Proc. SPIE 4742, 206-217 (2002).
[CrossRef]

J. M. Lopez-Alonso, J. Alda, and E. Bernabeu, "Principal components characterization of noise for infrared images," Appl. Opt. 41, 320-331 (2002).
[CrossRef] [PubMed]

1998 (2)

X. Miao, M. R. Azimi-Sadjadi, B. Tian, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Trans. Neural Netw. 9, 454-463 (1998).
[CrossRef]

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

1995 (1)

L. Yujiri, B. Hauss, and M. Shoucri, "Passive millimeter wave sensors for detection of buried mines," in Detection Technologies for Mines and Minelike Targets, A. Dubey, I. Cindrich, J. Ralston, and K. Rigano, eds., Proc. SPIE 2496, 2-6 (1995).
[CrossRef]

1992 (1)

M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Stricker, "Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator," IEEE Trans. Instrum. Meas. 41, 137-143 (1992).
[CrossRef]

Acheroy, M.

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

M. Acheroy, "Mine action: status of sensor technology for close-in and remote detection of antipersonnel mines," in Proceedings of the Third International Workshop on Advanced Ground Penetrating Radar (Delft, Netherlands, 2005), pp. 3-13.
[CrossRef]

Alda, J.

Amazeen, C.

J. Kositsky, R. Cosgrove, C. Amazeen, and P. Milanfar, "Results from a forward-looking GPR mine detection system," in Detection and Remediation Technologies for Mines and Minelike Targets VII, J. T. Broach, R. S. Harmon, and G. J. Dobeck, eds., Proc. SPIE 4742, 206-217 (2002).
[CrossRef]

Azimi-Sadjadi, M. R.

X. Miao, M. R. Azimi-Sadjadi, B. Tian, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Trans. Neural Netw. 9, 454-463 (1998).
[CrossRef]

M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Stricker, "Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator," IEEE Trans. Instrum. Meas. 41, 137-143 (1992).
[CrossRef]

Bernabeu, E.

Boreman, G. D.

W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
[CrossRef]

T. W. Du Bosq, R. E. Peale, and G. D. Boreman, "Terahertz/millimeter wave characterizations of soils for mine detection: transmission and scattering," IEEE Trans. Geosci. Remote Sens. (submitted for publication, 2005).

Cornelis, J.

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

Cosgrove, R.

J. Kositsky, R. Cosgrove, C. Amazeen, and P. Milanfar, "Results from a forward-looking GPR mine detection system," in Detection and Remediation Technologies for Mines and Minelike Targets VII, J. T. Broach, R. S. Harmon, and G. J. Dobeck, eds., Proc. SPIE 4742, 206-217 (2002).
[CrossRef]

Du Bosq, T. W.

T. W. Du Bosq, R. E. Peale, and G. D. Boreman, "Terahertz/millimeter wave characterizations of soils for mine detection: transmission and scattering," IEEE Trans. Geosci. Remote Sens. (submitted for publication, 2005).

Dubey, A. C.

X. Miao, M. R. Azimi-Sadjadi, B. Tian, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Trans. Neural Netw. 9, 454-463 (1998).
[CrossRef]

Folks, W. R.

W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
[CrossRef]

Hauss, B.

L. Yujiri, B. Hauss, and M. Shoucri, "Passive millimeter wave sensors for detection of buried mines," in Detection Technologies for Mines and Minelike Targets, A. Dubey, I. Cindrich, J. Ralston, and K. Rigano, eds., Proc. SPIE 2496, 2-6 (1995).
[CrossRef]

Karlsen, B.

B. Karlsen, J. Larsen, H. B. D. Sorensen, and K. B. Jakobsen, "Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection," in Proceedings of IEEE Conference on Statistical Signal Processing (IEEE 2001), pp. 146-149.

Karpowicz, N.

H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
[CrossRef]

Kositsky, J.

J. Kositsky, R. Cosgrove, C. Amazeen, and P. Milanfar, "Results from a forward-looking GPR mine detection system," in Detection and Remediation Technologies for Mines and Minelike Targets VII, J. T. Broach, R. S. Harmon, and G. J. Dobeck, eds., Proc. SPIE 4742, 206-217 (2002).
[CrossRef]

Kowalenko, K.

K. Kowalenko, "Saving lives, one land mine at a time," The Institute 28, 10-11 (2004).

Larsen, J.

B. Karlsen, J. Larsen, H. B. D. Sorensen, and K. B. Jakobsen, "Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection," in Proceedings of IEEE Conference on Statistical Signal Processing (IEEE 2001), pp. 146-149.

Lopez-Alonso, J. M.

Miao, X.

X. Miao, M. R. Azimi-Sadjadi, B. Tian, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Trans. Neural Netw. 9, 454-463 (1998).
[CrossRef]

Milanfar, P.

J. Kositsky, R. Cosgrove, C. Amazeen, and P. Milanfar, "Results from a forward-looking GPR mine detection system," in Detection and Remediation Technologies for Mines and Minelike Targets VII, J. T. Broach, R. S. Harmon, and G. J. Dobeck, eds., Proc. SPIE 4742, 206-217 (2002).
[CrossRef]

Milojevic, D.

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

Monacelli, B.

W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
[CrossRef]

J. M. Lopez-Alonso, B. Monacelli, J. Alda, and G. Boreman, "Uncertainty analysis in the measurement of the spatial responsivity of infrared antennas," Appl. Opt. 44, 4557-4568 (2005).
[CrossRef] [PubMed]

Morrison, D. F.

D. F. Morrison, Multivariate Statistical Methods, 3rd ed. (McGraw-Hill 1990).

Mullally, D.

W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
[CrossRef]

Partridge, J.

H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
[CrossRef]

Peale, R. E.

T. W. Du Bosq, R. E. Peale, and G. D. Boreman, "Terahertz/millimeter wave characterizations of soils for mine detection: transmission and scattering," IEEE Trans. Geosci. Remote Sens. (submitted for publication, 2005).

Poole, D. E.

M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Stricker, "Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator," IEEE Trans. Instrum. Meas. 41, 137-143 (1992).
[CrossRef]

Rico-Garcia, J. M.

Sahli, H.

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

Schachne, M.

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

Sheedvash, S.

M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Stricker, "Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator," IEEE Trans. Instrum. Meas. 41, 137-143 (1992).
[CrossRef]

Sherbondy, K. D.

M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Stricker, "Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator," IEEE Trans. Instrum. Meas. 41, 137-143 (1992).
[CrossRef]

Shoucri, M.

L. Yujiri, B. Hauss, and M. Shoucri, "Passive millimeter wave sensors for detection of buried mines," in Detection Technologies for Mines and Minelike Targets, A. Dubey, I. Cindrich, J. Ralston, and K. Rigano, eds., Proc. SPIE 2496, 2-6 (1995).
[CrossRef]

Sorensen, H. B. D.

B. Karlsen, J. Larsen, H. B. D. Sorensen, and K. B. Jakobsen, "Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection," in Proceedings of IEEE Conference on Statistical Signal Processing (IEEE 2001), pp. 146-149.

Stricker, S. A.

M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Stricker, "Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator," IEEE Trans. Instrum. Meas. 41, 137-143 (1992).
[CrossRef]

Tian, B.

X. Miao, M. R. Azimi-Sadjadi, B. Tian, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Trans. Neural Netw. 9, 454-463 (1998).
[CrossRef]

Van Ham, Ph.

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

van Kempen, L.

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

Weeks, A.

W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
[CrossRef]

Witherspoon, N. H.

X. Miao, M. R. Azimi-Sadjadi, B. Tian, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Trans. Neural Netw. 9, 454-463 (1998).
[CrossRef]

Xie, X.

H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
[CrossRef]

Xu, J.

H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
[CrossRef]

Yujiri, L.

L. Yujiri, B. Hauss, and M. Shoucri, "Passive millimeter wave sensors for detection of buried mines," in Detection Technologies for Mines and Minelike Targets, A. Dubey, I. Cindrich, J. Ralston, and K. Rigano, eds., Proc. SPIE 2496, 2-6 (1995).
[CrossRef]

Zhang, X.-C.

H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
[CrossRef]

Zhong, H.

H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
[CrossRef]

Zummo, G.

W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sens. (1)

T. W. Du Bosq, R. E. Peale, and G. D. Boreman, "Terahertz/millimeter wave characterizations of soils for mine detection: transmission and scattering," IEEE Trans. Geosci. Remote Sens. (submitted for publication, 2005).

IEEE Trans. Instrum. Meas. (1)

M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Stricker, "Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator," IEEE Trans. Instrum. Meas. 41, 137-143 (1992).
[CrossRef]

IEEE Trans. Neural Netw. (1)

X. Miao, M. R. Azimi-Sadjadi, B. Tian, A. C. Dubey, and N. H. Witherspoon, "Detection of mines and minelike targets using principal component and neural-network methods," IEEE Trans. Neural Netw. 9, 454-463 (1998).
[CrossRef]

Opt. Eng. (1)

W. R. Folks, J. M. Lopez-Alonso, B. Monacelli, A. Weeks, G. Zummo, D. Mullally, and G. D. Boreman, "Characterization of digital-micromirror device-based infrared scene projector," Opt. Eng. 44, 086402 (2005).
[CrossRef]

Opt. Express (1)

Proc. SPIE (3)

J. Kositsky, R. Cosgrove, C. Amazeen, and P. Milanfar, "Results from a forward-looking GPR mine detection system," in Detection and Remediation Technologies for Mines and Minelike Targets VII, J. T. Broach, R. S. Harmon, and G. J. Dobeck, eds., Proc. SPIE 4742, 206-217 (2002).
[CrossRef]

L. Yujiri, B. Hauss, and M. Shoucri, "Passive millimeter wave sensors for detection of buried mines," in Detection Technologies for Mines and Minelike Targets, A. Dubey, I. Cindrich, J. Ralston, and K. Rigano, eds., Proc. SPIE 2496, 2-6 (1995).
[CrossRef]

H. Zhong, N. Karpowicz, J. Partridge, X. Xie, J. Xu, and X.-C. Zhang, "Terahertz wave imaging for landmine detection," in Terahertz for Military and SecurityApplications II, R. J. Hwu and D. L. Woolard, eds., Proc. SPIE 5411, 33-44 (2004).
[CrossRef]

The Institute (1)

K. Kowalenko, "Saving lives, one land mine at a time," The Institute 28, 10-11 (2004).

Other (7)

M. Acheroy, "Mine action: status of sensor technology for close-in and remote detection of antipersonnel mines," in Proceedings of the Third International Workshop on Advanced Ground Penetrating Radar (Delft, Netherlands, 2005), pp. 3-13.
[CrossRef]

M. Schachne, L. van Kempen, D. Milojevic, H. Sahli, Ph. Van Ham, M. Acheroy, and J. Cornelis, "Mine detection by means of dynamic thermography: simulation and experiments," in The Second International Conference on the Detection of Abandoned Landmines (1998), pp. 124-128.

B. Karlsen, J. Larsen, H. B. D. Sorensen, and K. B. Jakobsen, "Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection," in Proceedings of IEEE Conference on Statistical Signal Processing (IEEE 2001), pp. 146-149.

"Landmine Data Sheet," National Defence Mine/Countermine Information Centre, The Department of National Defence, August 2005, http://ndmic-cidnm.forces.gc.ca.

D. F. Morrison, Multivariate Statistical Methods, 3rd ed. (McGraw-Hill 1990).

"Landmines Fact Sheet," United Nations Mine Clearance and Policy Unit, Department of Humanitarian Affairs, United Nations, September 1997, http://www.un.org/Pubs/CyberSchoolBus/banmines/facts.asp.

D. Schumaker, J. Wood, and C. Thacker, Infrared Imaging Systems Analysis (DCS Corporation, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Photograph of the active hyperspectral mmW imaging system. Inset, schematic of the path for taking a raster scan image. The radiation coming from the transmitter, at 90–140 GHz, is focused onto the sample using the HDPE lens, and scattering radiation from the object is collected and focused on the receiver at each pixel of the raster scan.

Fig. 2
Fig. 2

Photographs of the TS-50 land mine (top left), the M14 land mine (bottom left), and minefield debris (right) including, from top down, a 20 mm OICW practice round, a 20 mm WW II round, a 7.62 mm cartridge case, a 5.56 mm rose crimp cartridge case, and a 5.56 mm standard cartridge case; on the left a fuse lighter with a metal key ring.

Fig. 3
Fig. 3

Six of the 51 single-frequency reflectance images taken from 90 to 140 GHz in 1 GHz steps of the TS-50 land mine with a 2 mm step size, buried 15 mm deep, and with a flat soil surface.

Fig. 4
Fig. 4

Application of the PCA to a set of 51 single frequency images of the TS-50 land mine. Only one relevant principal component (Y1) appears. Some of the higher components (Y2, Y20, and Y50) are represented.

Fig. 5
Fig. 5

Percentage of variance explained by the principal components of Fig. 4.

Fig. 6
Fig. 6

Images of the mean value, STD, and SNR for the rectified images of Fig. 2 with the first principal component (left) and the higher components (right) of a TS-50 land mine at 2 mm step size, 15 mm deep, and with a flat soil surface.

Fig. 7
Fig. 7

Images of the mean value, STD, and SNR for the rectified images of an M14 land mine with the first principal component (left) and the higher components (right) at 2 mm step size, 15 mm deep, and with a flat soil surface.

Fig. 8
Fig. 8

Images of the mean value, STD, and SNR for the rectified images of the minefield debris with the higher components at 2 mm step size, 15 mm deep, and with a flat soil surface. The principal component rectified images did not show any features of the objects.

Fig. 9
Fig. 9

Change in resolution. Images of the mean value, STD, and SNR for the rectified images of a TS-50 land mine with the first principal component (left) and the higher components (right) at 5 mm step size, 15 mm deep, and with a flat soil surface.

Fig. 10
Fig. 10

Change in depth. Images of the mean value, STD, and SNR for the rectified images of a TS-50 land mine with the first principal component (left) and the higher components (right) at 5 mm step size, 50 mm deep, and with a flat soil surface.

Fig. 11
Fig. 11

Change in soil surface. Images of the mean value, STD, and SNR for the rectified images of a TS-50 land mine with the first principal component (left) and the higher components (right) at 2 mm step size, 15 mm deep, and with a disturbed soil surface.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Y α ( x ) = f = 1 N e α ( f ) F ( x , f ) .
F ( x , f ) = α = 1 N e α ( f ) Y α ( x ) .

Metrics