Abstract
Frequency changes induced by bias or temperature modulation of injection diode lasers can provide an economical and effective method of applying phase-stepping interferometry to optical metrology. However, the intrinsic frequency instability of these devices limits their use in gauge block interferometry where precise and repeatable phase steps must be maintained simultaneously on two discontinuous surfaces and over relatively long path lengths. We demonstrate a method using a visible injection diode laser, the frequency of which is locked by using a Fabry–Perot interferometer. Small changes to the length of the Fabry–Perot interferometer shift the frequency of the laser producing proportional and repeatable phase steps to the gauge block interferogram. This method has been successfully implemented with a Fizeau-type gauge block interferometer with a phase measurement resolution of . The phase data are then processed to map the surface form of gauge blocks up to in length and to objectively assess surface shape parameters.
© 2006 Optical Society of America
Full Article | PDF ArticleOSA Recommended Articles
Youichi Bitou, Hajime Inaba, Feng-Lei Hong, Toshiyuki Takatsuji, and Atsushi Onae
Appl. Opt. 44(26) 5403-5407 (2005)
Alexandre Titov, Igor Malinovsky, Hakima Belaïdi, Ricardo S. França, and Carlos A. Massone
Appl. Opt. 39(4) 526-538 (2000)
Toshihiko Yoshino and Hiroshi Yamaguchi
Opt. Lett. 23(20) 1576-1578 (1998)