Abstract

We have developed a fast scanning optical delay line based on a rotary mirror array. A double-pass configuration is adopted to optimize the fiber-optical coupling and thus minimize the amplitude modulation in the reflected light. The achieved scanning range is extended to over 3  mm. An additional Michelson interferometer is incorporated into the reference arm to achieve high delay repeatability. Such a device is ideal for real-time optical coherence tomography, optical Doppler tomography, and spectroscopic optical coherence tomography.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Choi, J. Na, G. Mudhana, S. Y. Ryu, and B. H. Lee, "Implementation of an all-fiber variable optical delay line with a pair of linearly chirped fiber Bragg gratings," IEICE Trans. Electron. E88C, 925-932 (2005).
    [CrossRef]
  2. E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opti. Express 13, 1334-1345 (2005).
    [CrossRef]
  3. D. Piao and Q. Zhu, "Power-efficient grating-based scanning optical delay line:time-domain configuration," Electron. Lett. 40, 97-98 (2004).
    [CrossRef]
  4. X. M. Liu, M. J. Cobb, and X. D. Li, "Rapid scanning all-reflective optical delay line for real-time optical coherence tomography," Opt. Lett. 29, 80-82 (2004).
    [CrossRef] [PubMed]
  5. P. L. Hsiung, X. D. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, "High-speed path-length scanning with a multiple-pass cavity delay line," Appl. Opt. 42, 640-648 (2003).
    [CrossRef] [PubMed]
  6. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner," Appl. Opt. 42, 4606-4611 (2003).
    [CrossRef] [PubMed]
  7. N. A. Riza and Z. Yaqoob, "Submicrosecond speed optical coherence tomography system design and analysis by use of acousto-optics," Appl. Opt. 42, 3018-3026 (2003).
    [CrossRef] [PubMed]
  8. B. H. Lee, T. J. Eom, E. Choi, G. Mudhana, and C. Lee, "Novel optical delay line for optical coherence tomography system," Opt. Rev. 10, 572-575 (2003).
    [CrossRef]
  9. N. G. Chen and Q. Zhu, "Rotary mirror array for high-speed optical coherence tomography," Opt. Lett. 27, 607-609 (2002).
    [CrossRef]
  10. K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, "Extended range, rapid scanning optical delay line for biomedical interferometric imaging," Electron. Lett. 35, 1404-1406 (1999).
    [CrossRef]
  11. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatts, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998).
    [CrossRef] [PubMed]
  12. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  13. R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two methods for fast coherence tomography and topometry," J. Mod. Opt. 44, 967-977 (1997).
    [CrossRef]
  14. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography," Opt. Lett. 30, 1015-1017 (2005).
    [CrossRef] [PubMed]
  15. C. Y. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4803 (2004).
    [CrossRef] [PubMed]
  16. C. H. Yang, M. A. Choma, L. E. Lamb, J. D. Simon, and J. A. Izatt, "Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent," Opt. Lett. 29, 1396-1398 (2004).
    [CrossRef] [PubMed]
  17. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
    [CrossRef]
  18. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Differential absorption imaging with optical coherence tomography," J. Opt. Soc. Am. A 15, 2288-2296 (1998).
    [CrossRef]

2005

E. Choi, J. Na, G. Mudhana, S. Y. Ryu, and B. H. Lee, "Implementation of an all-fiber variable optical delay line with a pair of linearly chirped fiber Bragg gratings," IEICE Trans. Electron. E88C, 925-932 (2005).
[CrossRef]

E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opti. Express 13, 1334-1345 (2005).
[CrossRef]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography," Opt. Lett. 30, 1015-1017 (2005).
[CrossRef] [PubMed]

2004

2003

2002

2000

1999

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, "Extended range, rapid scanning optical delay line for biomedical interferometric imaging," Electron. Lett. 35, 1404-1406 (1999).
[CrossRef]

1998

1997

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
[CrossRef]

R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two methods for fast coherence tomography and topometry," J. Mod. Opt. 44, 967-977 (1997).
[CrossRef]

Aalders, M. C. G.

Boppart, S. A.

Bouma, B. E.

Chen, N. G.

Choi, E.

E. Choi, J. Na, G. Mudhana, S. Y. Ryu, and B. H. Lee, "Implementation of an all-fiber variable optical delay line with a pair of linearly chirped fiber Bragg gratings," IEICE Trans. Electron. E88C, 925-932 (2005).
[CrossRef]

E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opti. Express 13, 1334-1345 (2005).
[CrossRef]

B. H. Lee, T. J. Eom, E. Choi, G. Mudhana, and C. Lee, "Novel optical delay line for optical coherence tomography system," Opt. Rev. 10, 572-575 (2003).
[CrossRef]

Choma, M. A.

Chudoba, C.

Cobb, M. J.

Do, M. N.

Drexler, W.

Eom, T. J.

B. H. Lee, T. J. Eom, E. Choi, G. Mudhana, and C. Lee, "Novel optical delay line for optical coherence tomography system," Opt. Rev. 10, 572-575 (2003).
[CrossRef]

Faber, D. J.

Fleischer, M.

R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two methods for fast coherence tomography and topometry," J. Mod. Opt. 44, 967-977 (1997).
[CrossRef]

Franze, B.

R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two methods for fast coherence tomography and topometry," J. Mod. Opt. 44, 967-977 (1997).
[CrossRef]

Fujimoto, J. G.

Hartl, I.

Hsiung, P. L.

Ippen, E. P.

Izatt, J. A.

Izatts, J. A.

Kartner, F. X.

Ko, T. H.

Kulkarni, M. D.

Lamb, L. E.

Lee, B. H.

E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opti. Express 13, 1334-1345 (2005).
[CrossRef]

E. Choi, J. Na, G. Mudhana, S. Y. Ryu, and B. H. Lee, "Implementation of an all-fiber variable optical delay line with a pair of linearly chirped fiber Bragg gratings," IEICE Trans. Electron. E88C, 925-932 (2005).
[CrossRef]

B. H. Lee, T. J. Eom, E. Choi, G. Mudhana, and C. Lee, "Novel optical delay line for optical coherence tomography system," Opt. Rev. 10, 572-575 (2003).
[CrossRef]

Lee, C.

B. H. Lee, T. J. Eom, E. Choi, G. Mudhana, and C. Lee, "Novel optical delay line for optical coherence tomography system," Opt. Rev. 10, 572-575 (2003).
[CrossRef]

Li, X. D.

Liu, X. M.

Marks, D. L.

Mik, E. G.

Morgner, U.

Mudhana, G.

E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opti. Express 13, 1334-1345 (2005).
[CrossRef]

E. Choi, J. Na, G. Mudhana, S. Y. Ryu, and B. H. Lee, "Implementation of an all-fiber variable optical delay line with a pair of linearly chirped fiber Bragg gratings," IEICE Trans. Electron. E88C, 925-932 (2005).
[CrossRef]

B. H. Lee, T. J. Eom, E. Choi, G. Mudhana, and C. Lee, "Novel optical delay line for optical coherence tomography system," Opt. Rev. 10, 572-575 (2003).
[CrossRef]

Na, J.

E. Choi, J. Na, G. Mudhana, S. Y. Ryu, and B. H. Lee, "Implementation of an all-fiber variable optical delay line with a pair of linearly chirped fiber Bragg gratings," IEICE Trans. Electron. E88C, 925-932 (2005).
[CrossRef]

Na, J. H.

E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opti. Express 13, 1334-1345 (2005).
[CrossRef]

Oldenburg, A. L.

Piao, D.

D. Piao and Q. Zhu, "Power-efficient grating-based scanning optical delay line:time-domain configuration," Electron. Lett. 40, 97-98 (2004).
[CrossRef]

Pitris, C.

Reynolds, J. J.

Riza, N. A.

Rollins, M.

Ryu, S. Y.

E. Choi, J. Na, G. Mudhana, S. Y. Ryu, and B. H. Lee, "Implementation of an all-fiber variable optical delay line with a pair of linearly chirped fiber Bragg gratings," IEICE Trans. Electron. E88C, 925-932 (2005).
[CrossRef]

Ryu, Y.

E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opti. Express 13, 1334-1345 (2005).
[CrossRef]

Sampson, D. D.

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, "Extended range, rapid scanning optical delay line for biomedical interferometric imaging," Electron. Lett. 35, 1404-1406 (1999).
[CrossRef]

Schmitt, J. M.

Silva, K. K. M. B. D.

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, "Extended range, rapid scanning optical delay line for biomedical interferometric imaging," Electron. Lett. 35, 1404-1406 (1999).
[CrossRef]

Simon, J. D.

Tearney, G. J.

Tiziani, H. J.

R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two methods for fast coherence tomography and topometry," J. Mod. Opt. 44, 967-977 (1997).
[CrossRef]

Ung-arunyawee, R.

van Leeuwen, T. G.

Windecker, R.

R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two methods for fast coherence tomography and topometry," J. Mod. Opt. 44, 967-977 (1997).
[CrossRef]

Xiang, S. H.

Xu, C. Y.

Yang, C. H.

Yaqoob, Z.

Yazdanfar, S.

Yung, K. M.

Zhu, Q.

D. Piao and Q. Zhu, "Power-efficient grating-based scanning optical delay line:time-domain configuration," Electron. Lett. 40, 97-98 (2004).
[CrossRef]

N. G. Chen and Q. Zhu, "Rotary mirror array for high-speed optical coherence tomography," Opt. Lett. 27, 607-609 (2002).
[CrossRef]

Zvyagin, A. V.

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, "Extended range, rapid scanning optical delay line for biomedical interferometric imaging," Electron. Lett. 35, 1404-1406 (1999).
[CrossRef]

Appl. Opt.

Electron. Lett.

D. Piao and Q. Zhu, "Power-efficient grating-based scanning optical delay line:time-domain configuration," Electron. Lett. 40, 97-98 (2004).
[CrossRef]

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, "Extended range, rapid scanning optical delay line for biomedical interferometric imaging," Electron. Lett. 35, 1404-1406 (1999).
[CrossRef]

IEICE Trans. Electron.

E. Choi, J. Na, G. Mudhana, S. Y. Ryu, and B. H. Lee, "Implementation of an all-fiber variable optical delay line with a pair of linearly chirped fiber Bragg gratings," IEICE Trans. Electron. E88C, 925-932 (2005).
[CrossRef]

J. Mod. Opt.

R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two methods for fast coherence tomography and topometry," J. Mod. Opt. 44, 967-977 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Opt. Rev.

B. H. Lee, T. J. Eom, E. Choi, G. Mudhana, and C. Lee, "Novel optical delay line for optical coherence tomography system," Opt. Rev. 10, 572-575 (2003).
[CrossRef]

Opti. Express

E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opti. Express 13, 1334-1345 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Rotary mirror array and single-pass optical delay line. (b) Double-pass configuration of our delay line. The dashed lines denote a second mirror orientation and the corresponding optical paths. To avoid overlapping, we have displaced the optics in the dotted box.

Fig. 2
Fig. 2

(a) Parallel shift in the double-pass configuration (for simplicity, a single line denotes a light beam). (b) Parallel shift and mirror edge effect projected on the principal plane of the collimating lens.

Fig. 3
Fig. 3

(a) Experimental setup for testing of amplitude modulation. (b) The fast OCT system used for imaging experiments. OC, optical circulator; PD, photodetector; PD1, dual-balanced photodetector.

Fig. 4
Fig. 4

Waveform acquired from our delay line.

Fig. 5
Fig. 5

(a) Expected normalized beam amplitude versus acquired waveform as a function of time. (b) Fiber-optical coupling efficiency with different beam diameters (collimator focal length).

Fig. 6
Fig. 6

Cross-sectional image of the glass cover slips acquired with our fast OCT system.

Tables (2)

Tables Icon

Table 1 Flatness and Corresponding Scanning Range Achieved with the Delay Line

Tables Icon

Table 2 Actual Axial Position of a Mirror Surface and Corresponding Interferometric Values Measured with the Delay Line

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ n x n y n z ] = [ cos φ sin φ 0 sin φ cos φ 0 0 0 1 ] [ n x n y n z ] ,
n n 0 = [ sin α cos Δ sin α sin Δ cos α ] [ sin α 0 cos α ]
[ 0 sin α sin Δ 0 ] ,
Δ l ( t ) = R ( 1 + cos θ ) tan α sin ( ω t ) ,
I ( x , y ) = 1 2 π σ 2 e ( x 2 + y 2 ) / 2 σ 2 ,
ρ ( t ) = R sin θ tan α sin ( ω t ) .
M ( x , y , t ) = { 1 | x ω t | < R Δ X d / 2 0 e l s e w h e r e ,
U ( t ) = + - + I ( x y ) × M ( x , y , t ) × C ( x , y ) d x d y ,
C ( x , y ) = { 1 x 2 + y 2 r 2 0 e l s e w h e r e

Metrics