Abstract

We applied two numerical methods to in situ hyperspectral measurements of remote sensing reflectance R rs to assess the feasibility of remote detection and monitoring of the toxic dinoflagellate, Karenia brevis, which has been shown to exhibit unique absorption properties. First, an existing quasi-analytical algorithm was used to invert remote sensing reflectance spectra, Rrs(λ), to derive phytoplankton absorption spectra, aφ   Rrs(λ). Second, the fourth derivatives of the aφ   Rrs(λ) spectra were compared to the fourth derivative of a reference K. brevis absorption spectrum by means of a similarity index (SI) analysis. Comparison of reflectance-derived aφ with filter pad measured aφ found them to agree well (R2=0.891; average percentage difference, 22.8%). A strong correlation (R2=0.743) between surface cell concentration and the SI was observed, showing the potential utility of SI magnitude as an indicator of bloom strength. A sensitivity analysis conducted to investigate the effects of varying levels of cell concentrations and colored dissolved organic matter (CDOM) on the efficacy of the quasi-analytical algorithm and SI found that aφ   Rrs(λ) could not be derived for very low cell concentrations and that, although it is possible to derive aφ   Rrs(λ) in the presence of high CDOM concentrations, CDOM levels influence the aφ   Rrs(λ) amplitude and shape. Results suggest that detection and mapping of K. brevis blooms based on hyperspectral measurements of Rrs are feasible.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription