Abstract

The wavelength conversion of picosecond optical pulses based on the cascaded second-harmonic generation–difference-frequency generation process in a MgO-doped periodically poled lithium niobate waveguide is studied both experimentally and theoretically. In the experiments, the picosecond pulses are generated from a 40  GHz mode-locked fiber laser and two tunable filters, with which the lasing wavelength can be tuned from 1530 to 1570   nm, and the pulse width can be tuned from 2   to   7   ps. New-frequency pulses, i.e., converted pulses, are generated when the picosecond pulse train and a cw wave interact in the waveguide. The conversion characteristics are systematically investigated when the pulsed and cw waves are alternatively taken as the pump at the quasi-phase-matching wavelength of the device. In particular, the conversion dependences on input pulse width, average power, and pump wavelength are examined quantitatively. Based on the temporal and spectral characteristics of wavelength conversion, a comprehensive analysis on conversion efficiency is presented. The simulation results are in good agreement with the measured data.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
    [CrossRef]
  2. J. M. H. Elmirghani and H. T. Mouftah, "All-optical wavelength conversion: technologies and applications in DWDM networks," IEEE Commun. Mag. 38, 86-92 (2000).
    [CrossRef]
  3. C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
    [CrossRef]
  4. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5 μm band wavelength conversion based on difference-frequency generation in LiNbO waveguides with integrated coupling structures," Opt. Lett. 23, 1004-1006 (1998).
    [CrossRef]
  5. K. Gallo and G. Assanto, "Analysis of lithium niobate all-optical wavelength shifters for the third spectral window," J. Opt. Soc. Am. B 16, 741-753 (1999).
    [CrossRef]
  6. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).
  7. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.55-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photonics Technol. Lett. 11, 653-655 (1999).
    [CrossRef]
  8. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  10. S. L. Shapiro, "Second harmonic generation in LiNbO3 by picosecond pulses," Appl. Phys. Lett. 13, 19-21 (1968).
    [CrossRef]
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000).
    [CrossRef]
  12. P. Loza-Alvarez, M. Ebrahimzadeh, W. Sibbett, D. T. Reid, D. Artigas, and M. Missey, "Femtosecond second-harmonic pulse compression in a periodically poled lithium niobate: a systematic comparison of experiment and theory," J. Opt. Soc. Am. B 18, 1212-1217 (2001).
    [CrossRef]
  13. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, "Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group velocity walk-off," J. Opt. Soc. Am. B 19, 839-848 (2002).
    [CrossRef]
  14. S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, "Second-harmonic generation with focused beams under conditions of large group-velocity mismatch," J. Opt. Soc. Am. B 21, 591-598 (2004).
    [CrossRef]
  15. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998).
    [CrossRef]
  16. C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
    [CrossRef]
  17. C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
    [CrossRef]
  18. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
    [CrossRef]
  19. H. Ishizuki, T. Suhara, and H. Nishihara, "Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices," Jpn. Electron. & Comm. 86, 11-20 (2003).
    [CrossRef]
  20. L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003).
    [CrossRef]
  21. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
    [CrossRef]
  22. E. A. Ponomarev, S. Yang, and X. Bao, "Computer controlled harmonic FM mode-locking of 40 GHz repetition rate fiber laser," in Proc. SPIE 5579, 736-743 (2004).
    [CrossRef]
  23. B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
    [CrossRef]
  24. Y. Wang, B. Chen, and C.-Q. Xu, "Novel polarization-insensitive QPM wavelength converter with out-of-band pump," Electron. Lett. 40, 189-190 (2004).
    [CrossRef]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

2004 (4)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

E. A. Ponomarev, S. Yang, and X. Bao, "Computer controlled harmonic FM mode-locking of 40 GHz repetition rate fiber laser," in Proc. SPIE 5579, 736-743 (2004).
[CrossRef]

Y. Wang, B. Chen, and C.-Q. Xu, "Novel polarization-insensitive QPM wavelength converter with out-of-band pump," Electron. Lett. 40, 189-190 (2004).
[CrossRef]

S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, "Second-harmonic generation with focused beams under conditions of large group-velocity mismatch," J. Opt. Soc. Am. B 21, 591-598 (2004).
[CrossRef]

2003 (2)

H. Ishizuki, T. Suhara, and H. Nishihara, "Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices," Jpn. Electron. & Comm. 86, 11-20 (2003).
[CrossRef]

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003).
[CrossRef]

2002 (1)

2001 (6)

P. Loza-Alvarez, M. Ebrahimzadeh, W. Sibbett, D. T. Reid, D. Artigas, and M. Missey, "Femtosecond second-harmonic pulse compression in a periodically poled lithium niobate: a systematic comparison of experiment and theory," J. Opt. Soc. Am. B 18, 1212-1217 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
[CrossRef]

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
[CrossRef]

2000 (2)

1999 (2)

K. Gallo and G. Assanto, "Analysis of lithium niobate all-optical wavelength shifters for the third spectral window," J. Opt. Soc. Am. B 16, 741-753 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.55-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

1998 (2)

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5 μm band wavelength conversion based on difference-frequency generation in LiNbO waveguides with integrated coupling structures," Opt. Lett. 23, 1004-1006 (1998).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998).
[CrossRef]

1996 (1)

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

1993 (1)

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1968 (1)

S. L. Shapiro, "Second harmonic generation in LiNbO3 by picosecond pulses," Appl. Phys. Lett. 13, 19-21 (1968).
[CrossRef]

Agate, B.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Arahira, S.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
[CrossRef]

Arbore, M. A.

Artigas, D.

Ashihara, S.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Assanto, G.

Banfi, G. P.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998).
[CrossRef]

Bao, X.

E. A. Ponomarev, S. Yang, and X. Bao, "Computer controlled harmonic FM mode-locking of 40 GHz repetition rate fiber laser," in Proc. SPIE 5579, 736-743 (2004).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.55-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Cha, M.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.55-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chen, B.

Y. Wang, B. Chen, and C.-Q. Xu, "Novel polarization-insensitive QPM wavelength converter with out-of-band pump," Electron. Lett. 40, 189-190 (2004).
[CrossRef]

B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
[CrossRef]

Chou, M. H.

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.55-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Cristiani, I.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003).
[CrossRef]

Datta, P. K.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998).
[CrossRef]

Degiorgio, V.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998).
[CrossRef]

Ebrahimzadeh, M.

Elmirghani, J. M. H.

J. M. H. Elmirghani and H. T. Mouftah, "All-optical wavelength conversion: technologies and applications in DWDM networks," IEEE Commun. Mag. 38, 86-92 (2000).
[CrossRef]

Fejer, M. M.

Fermann, M.

Fortusini, D.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998).
[CrossRef]

Fujimura, M.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

Gallo, K.

Galvanauskas, A.

Grundkotter, W.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

Harada, A.

B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
[CrossRef]

Harter, D.

Hauden, J.

Imeshev, G.

Ishizuki, H.

H. Ishizuki, T. Suhara, and H. Nishihara, "Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices," Jpn. Electron. & Comm. 86, 11-20 (2003).
[CrossRef]

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

Ito, H.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Kawahara, M.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

Kitamura, K.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Koynov, K.

Kurimura, S.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Kuroda, K.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Lam, Y. L.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
[CrossRef]

Lee, Y. L.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

Liberale, C.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003).
[CrossRef]

Loza-Alvarez, P.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Missey, M.

Mouftah, H. T.

J. M. H. Elmirghani and H. T. Mouftah, "All-optical wavelength conversion: technologies and applications in DWDM networks," IEEE Commun. Mag. 38, 86-92 (2000).
[CrossRef]

Nihei, Y.

B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
[CrossRef]

Nishihara, H.

H. Ishizuki, T. Suhara, and H. Nishihara, "Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices," Jpn. Electron. & Comm. 86, 11-20 (2003).
[CrossRef]

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

Ogawa, Y.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

Parameswaran, K. R.

Ponomarev, E. A.

E. A. Ponomarev, S. Yang, and X. Bao, "Computer controlled harmonic FM mode-locking of 40 GHz repetition rate fiber laser," in Proc. SPIE 5579, 736-743 (2004).
[CrossRef]

Quiring, V.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

Razzari, L.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003).
[CrossRef]

Reid, D. T.

Ricken, R.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

Saltiel, S. M.

Schreiber, G.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

Shapiro, S. L.

S. L. Shapiro, "Second harmonic generation in LiNbO3 by picosecond pulses," Appl. Phys. Lett. 13, 19-21 (1968).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Shimura, T.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Sibbett, W.

Sohler, W.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

Suche, H.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

Suhara, T.

H. Ishizuki, T. Suhara, and H. Nishihara, "Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices," Jpn. Electron. & Comm. 86, 11-20 (2003).
[CrossRef]

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

Taira, T.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Tediosi, R.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003).
[CrossRef]

Wang, Y.

Y. Wang, B. Chen, and C.-Q. Xu, "Novel polarization-insensitive QPM wavelength converter with out-of-band pump," Electron. Lett. 40, 189-190 (2004).
[CrossRef]

B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
[CrossRef]

Weiner, A. M.

Xu, C. Q.

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

Xu, C.-Q

B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
[CrossRef]

Xu, C.-Q.

Y. Wang, B. Chen, and C.-Q. Xu, "Novel polarization-insensitive QPM wavelength converter with out-of-band pump," Electron. Lett. 40, 189-190 (2004).
[CrossRef]

Yang, S.

E. A. Ponomarev, S. Yang, and X. Bao, "Computer controlled harmonic FM mode-locking of 40 GHz repetition rate fiber laser," in Proc. SPIE 5579, 736-743 (2004).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

Yu, N. E.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Zheng, Z.

Zhou, B.

B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
[CrossRef]

App. Phys. Lett. (1)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," App. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

Appl. Phys. B (1)

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping," Appl. Phys. B 73, 501-504 (2001).

Appl. Phys. Lett. (3)

S. L. Shapiro, "Second harmonic generation in LiNbO3 by picosecond pulses," Appl. Phys. Lett. 13, 19-21 (1968).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, "Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate," Appl. Phys. Lett. 73, 136-138 (1998).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

Electron. Lett. (1)

Y. Wang, B. Chen, and C.-Q. Xu, "Novel polarization-insensitive QPM wavelength converter with out-of-band pump," Electron. Lett. 40, 189-190 (2004).
[CrossRef]

IEEE Commun. Mag. (1)

J. M. H. Elmirghani and H. T. Mouftah, "All-optical wavelength conversion: technologies and applications in DWDM networks," IEEE Commun. Mag. 38, 86-92 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, "Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration," IEEE J. Quantum Electron. 39, 1486-1491 (2003).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.55-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

J. Lightwave Technol. (1)

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

J. Opt. Soc. Am. B (5)

Jpn. Electron. & Comm. (1)

H. Ishizuki, T. Suhara, and H. Nishihara, "Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices," Jpn. Electron. & Comm. 86, 11-20 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (3)

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "Fixed-in variable-out wavelength conversion using LiNbO3 quasiphase-matched wavelength converter," Jpn. J. Appl. Phys. , Part 2 40, L158-L159 (2001).
[CrossRef]

C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, "All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L881-L883 (2001).
[CrossRef]

B. Chen, C.-Q Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, "Temperature characteristics of 1.5 μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters," Jpn. J. Appl. Phys. , Part 2 40, L612-614 (2001).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

Proc. SPIE (1)

E. A. Ponomarev, S. Yang, and X. Bao, "Computer controlled harmonic FM mode-locking of 40 GHz repetition rate fiber laser," in Proc. SPIE 5579, 736-743 (2004).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Experimental setup of (a) mode-locked fiber laser and (b) wavelength conversion through a PPMGLN waveguide. ISO, isolator; VOA, variable optical attenuator; TLS, tunable laser source.

Fig. 2
Fig. 2

Autocorrelation traces, output spectra of pump, signal, converted pulses, and second-harmonic wave for different signal pulse widths in Scheme I.

Fig. 3
Fig. 3

Output spectra of pump, signal, converted pulses, and second-harmonic wave for different pump pulse widths in Scheme II.

Fig. 4
Fig. 4

Output spectra of pump, signal, and converted pulses for different average pump powers in Scheme II.

Fig. 5
Fig. 5

Comparison of output spectra for different pump central wavelengths and pulse widths in Scheme II.

Fig. 6
Fig. 6

Simulated pulse shapes and optical spectra of input–output pump, signal, converted, and second-harmonic waves for the 4 ps signal pulse in Scheme I.

Fig. 7
Fig. 7

Detailed comparisons of output pulse shapes and optical spectra individually shown in Fig. 6.

Fig. 8
Fig. 8

Simulated pulse shapes and optical spectra of input–output pump, signal, converted, and second-harmonic waves for the 4 ps signal pulse in Scheme II.

Fig. 9
Fig. 9

Detailed comparisons of output pulse shapes and optical spectra individually shown in Fig. 8.

Fig. 10
Fig. 10

Simulated (solid curves and lines) and measured (symbols) energy efficiencies and spectral-peak efficiencies versus signal pulse width in Scheme I.

Fig. 11
Fig. 11

Simulated (solid curves and lines) and measured (symbols) energy efficiencies and spectral-peak efficiencies versus pump pulse width in Scheme II.

Fig. 12
Fig. 12

Efficiencies versus input pulse width in two schemes under constant average power and peak power (20 dBm) for input pump and signal. The solid curves refer to different pulse widths but the same average powers. The dashed curves refer to the same peak powers.

Fig. 13
Fig. 13

Simulated (solid lines) and measured (symbols) energy efficiencies and spectral-peak efficiencies versus average pump power in Scheme II.

Fig. 14
Fig. 14

Simulated energy efficiencies and spectral-peak efficiencies versus average signal power in Scheme I.

Fig. 15
Fig. 15

Simulated energy efficiencies and spectral-peak efficiencies versus pump central wavelength compared with the experimental data (symbols) for different pump pulse widths in Scheme II.

Fig. 16
Fig. 16

Simulated energy efficiencies and spectral-peak efficiencies versus pump central wavelength in Scheme I.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

A p z = β 1 p A p t j 2 β 2 p 2 A p t 2 j ω p κ p p A p * A SH × exp ( j Δ k p z ) α p 2 A p ,
A SH z = - β 1 SH A SH t j 2 β 2 SH 2 A SH t 2 j ω p κ p p A p A p exp ( j Δ k p z ) 2 j ω p κ s c A s A c exp ( j Δ k c z ) α SH 2 A SH ,
A s z = β 1 s A s t j 2 β 2 s 2 A s t 2 j ω s κ s c A c * A SH × exp ( j Δ k c z ) α s 2 A s ,
A c z = β 1 c A c t j 2 β 2 c 2 A c t 2 j ω c κ s c A s * A SH × exp ( j Δ k c z ) α c 2 A c ,
Δ k p = β ( ω SH ) 2 β ( ω p ) 2 π Λ = 4 π λ p [ n e ( λ SH ) n e ( λ p ) ] 2 π Λ ,
Δ k c = β ( ω SH ) β ( ω s ) β ( ω c ) 2 π Λ = 2 π λ SH n e ( λ SH ) 2 π λ s n e ( λ s ) 2 π λ c n e ( λ c ) 2 π Λ ,
κ p p = 2 μ 0 / c d eff n e ( λ SH ) n e ( λ p ) 2 A eff ,
κ sc = 2 μ 0 / c d eff n e ( λ SH ) n e ( λ s ) n e ( λ s ) A eff ,
d eff = 2 π d 33 ,
n e 2 ( λ ) = A + B λ 2 C D λ 2 .
ω SH = 2 ω p , ω c = ω SH ω s , Δ k c 0 .
β 1 = 1 c ( n e + ω d n e d ω ) = n e c λ c d n e d λ ,
β 2 = 1 c ( 2 d n e d ω + ω d 2 n e d ω 2 ) = λ 3 2 π c 2 d 2 n e d λ 2 .
L w SH = Δ τ p | β 1     SH β 1     p | , L w c = Δ τ SH | β 1     c β 1     SH | ,
η E c / p = | A c ( t , L ) | 2 d t | A p ( t , 0 ) | 2 d t = S c ( λ , L ) d λ S p ( λ , 0 ) d λ ,
η E c / s = | A c ( t , L ) | 2 d t | A s ( t , 0 ) | 2 d t = S c ( λ , L ) d λ S s ( λ , 0 ) d λ ,

Metrics