Abstract

The wavelength conversion of picosecond optical pulses based on the cascaded second-harmonic generation–difference-frequency generation process in a MgO-doped periodically poled lithium niobate waveguide is studied both experimentally and theoretically. In the experiments, the picosecond pulses are generated from a 40  GHz mode-locked fiber laser and two tunable filters, with which the lasing wavelength can be tuned from 1530 to 1570   nm, and the pulse width can be tuned from 2   to   7   ps. New-frequency pulses, i.e., converted pulses, are generated when the picosecond pulse train and a cw wave interact in the waveguide. The conversion characteristics are systematically investigated when the pulsed and cw waves are alternatively taken as the pump at the quasi-phase-matching wavelength of the device. In particular, the conversion dependences on input pulse width, average power, and pump wavelength are examined quantitatively. Based on the temporal and spectral characteristics of wavelength conversion, a comprehensive analysis on conversion efficiency is presented. The simulation results are in good agreement with the measured data.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription