Abstract

The luminescence of Perylene Orange and LDS821 in poly(methyl methacrylate) (PMMA) following a 532  nm irradiation yielded information on photodegradation and energy transfer. The irradiation of the Perylene Orange∕LDS821∕PMMA films resulted in (i) a maximum in the Perylene Orange fluorescence photodegradation profile and (ii) an enhancement of the LDS821 fluorescence relative to the LDS821∕PMMA films. These results are attributed to an energy transfer from the Perylene Orange to the LDS821 with an energy transfer rate constant of 5.19±0 .75  (2σ)×1011M1s1 and a Förster critical radius of 65.7  Å. Fluorescence half-quenching and time-resolved fluorescence measurements attributed energy transfer to the Förster energy transfer with minor contributions of radiative energy transfer.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ghioni, F. Zappa, V. P. Kesan, and J. Warnock, "A VSLI-compatible high-speed silicon photodetector for optical data link applications," IEEE Trans. Electron Devices 43, 1054-1060 (1996).
    [CrossRef]
  2. T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
    [CrossRef]
  3. H. Suzuki, "Self-enhancement in the electroluminescence of a near-infrared ionic dye," Appl. Phys. Lett. 76, 1543-1545 (2000).
    [CrossRef]
  4. H. Suzuki, "Organic light-emitting materials and devices for optical communication technology," J. Photochem. Photobiol. A 166, 155-161 (2004).
    [CrossRef]
  5. M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
    [CrossRef]
  6. A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996).
    [CrossRef]
  7. R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
    [CrossRef]
  8. N. Tanaka, N. Barashkov, J. Heath, and W. N. Sisk, "Photodegradation of polymer-dispersed perylene diimide dyes" Appl. Opt. 45, 3846-3851 (2006).
    [CrossRef] [PubMed]
  9. D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004).
    [CrossRef]
  10. G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
    [CrossRef]
  11. A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
    [CrossRef]
  12. P. Sharma, "Polymeric thin films for integrated optics," Ph.D. dissertation (University of Durham, 1992).
  13. N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991).
  14. R. S. Roller and M. A. Winnik, "The determination of the Foerster distance (R0) for phenanthrene and anthracene Derivatives in poly(methyl methacrylate) films," J. Phys. Chem. B 109, 12261-12269 (2005).
    [CrossRef]
  15. H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
    [CrossRef]

2006 (1)

2005 (1)

R. S. Roller and M. A. Winnik, "The determination of the Foerster distance (R0) for phenanthrene and anthracene Derivatives in poly(methyl methacrylate) films," J. Phys. Chem. B 109, 12261-12269 (2005).
[CrossRef]

2004 (4)

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004).
[CrossRef]

T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
[CrossRef]

H. Suzuki, "Organic light-emitting materials and devices for optical communication technology," J. Photochem. Photobiol. A 166, 155-161 (2004).
[CrossRef]

2002 (1)

G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

2000 (1)

H. Suzuki, "Self-enhancement in the electroluminescence of a near-infrared ionic dye," Appl. Phys. Lett. 76, 1543-1545 (2000).
[CrossRef]

1998 (1)

H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

1997 (1)

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

1996 (2)

A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996).
[CrossRef]

M. Ghioni, F. Zappa, V. P. Kesan, and J. Warnock, "A VSLI-compatible high-speed silicon photodetector for optical data link applications," IEEE Trans. Electron Devices 43, 1054-1060 (1996).
[CrossRef]

1992 (1)

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
[CrossRef]

Bacher, A.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
[CrossRef]

Bao, Z.

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

Barashkov, N.

Berggren, M.

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

Blau, W. J.

T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
[CrossRef]

Boilot, J.

A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996).
[CrossRef]

Bradley, D. D. C.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
[CrossRef]

Brun, A.

A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996).
[CrossRef]

Buckley, A. R.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
[CrossRef]

Canva, M.

A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996).
[CrossRef]

Chaput, F.

A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996).
[CrossRef]

Corkan, L. A.

H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Di Carlo, A.

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

Du, H.

H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Dubois, A.

A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996).
[CrossRef]

Fox, A. M.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
[CrossRef]

Fuh, R.-C. A.

H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Ghioni, M.

M. Ghioni, F. Zappa, V. P. Kesan, and J. Warnock, "A VSLI-compatible high-speed silicon photodetector for optical data link applications," IEEE Trans. Electron Devices 43, 1054-1060 (1996).
[CrossRef]

Heath, J.

Jordan, G.

T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
[CrossRef]

Jose, G.

G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

Kaino, T.

T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
[CrossRef]

Kesan, V. P.

M. Ghioni, F. Zappa, V. P. Kesan, and J. Warnock, "A VSLI-compatible high-speed silicon photodetector for optical data link applications," IEEE Trans. Electron Devices 43, 1054-1060 (1996).
[CrossRef]

Kobayashi, T.

T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
[CrossRef]

Kumar, G. A.

G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

Lagonigroa, L.

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Li, J.

H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Lindsey, J. S.

H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Lo Sterzo, C.

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Mandoj, F.

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Nampoori, V. P. N.

G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

Paolesse, R.

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Pizzoferratoa, R.

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Qian, G.

D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004).
[CrossRef]

Ricci, A.

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Roller, R. S.

R. S. Roller and M. A. Winnik, "The determination of the Foerster distance (R0) for phenanthrene and anthracene Derivatives in poly(methyl methacrylate) films," J. Phys. Chem. B 109, 12261-12269 (2005).
[CrossRef]

Samuel, I. D. W.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
[CrossRef]

Savatier, J.

T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
[CrossRef]

Sharma, P.

P. Sharma, "Polymeric thin films for integrated optics," Ph.D. dissertation (University of Durham, 1992).

Sheridan, A. K.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
[CrossRef]

Sisk, W. N.

Slusher, R. E.

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

Su, D.

D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004).
[CrossRef]

Suzuki, H.

H. Suzuki, "Organic light-emitting materials and devices for optical communication technology," J. Photochem. Photobiol. A 166, 155-161 (2004).
[CrossRef]

H. Suzuki, "Self-enhancement in the electroluminescence of a near-infrared ionic dye," Appl. Phys. Lett. 76, 1543-1545 (2000).
[CrossRef]

Suzuki, Y.

T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
[CrossRef]

Tanaka, N.

Thomas, V.

G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

Turro, N. J.

N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991).

Unnikrishnan, N. V.

G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

Wang, M.

D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004).
[CrossRef]

Wang, Z.

D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004).
[CrossRef]

Warnock, J.

M. Ghioni, F. Zappa, V. P. Kesan, and J. Warnock, "A VSLI-compatible high-speed silicon photodetector for optical data link applications," IEEE Trans. Electron Devices 43, 1054-1060 (1996).
[CrossRef]

Winnik, M. A.

R. S. Roller and M. A. Winnik, "The determination of the Foerster distance (R0) for phenanthrene and anthracene Derivatives in poly(methyl methacrylate) films," J. Phys. Chem. B 109, 12261-12269 (2005).
[CrossRef]

Yang, Y.

D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004).
[CrossRef]

Zappa, F.

M. Ghioni, F. Zappa, V. P. Kesan, and J. Warnock, "A VSLI-compatible high-speed silicon photodetector for optical data link applications," IEEE Trans. Electron Devices 43, 1054-1060 (1996).
[CrossRef]

Zillerb, T.

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Kobayashi, J. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, "Near-infrared laser emission from luminescent plastic waveguides," Appl. Phys. Lett. 85, 185-187 (2004).
[CrossRef]

H. Suzuki, "Self-enhancement in the electroluminescence of a near-infrared ionic dye," Appl. Phys. Lett. 76, 1543-1545 (2000).
[CrossRef]

Chem. Phys. (1)

R. Pizzoferratoa, L. Lagonigroa, T. Zillerb, A. Di Carlo, R. Paolesse, F. Mandoj, A. Ricci, and C. Lo Sterzo, "Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex," Chem. Phys. 300, 217-225 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

D. Su, Y. Yang, G. Qian, Z. Wang, and M. Wang, "Influence of energy transfer on fluorescence and lasing properties of various laser dyes co-doped in ORMOSILs," Chem. Phys. Lett. 397, 397-401 (2004).
[CrossRef]

IEEE Trans. Electron Devices (1)

M. Ghioni, F. Zappa, V. P. Kesan, and J. Warnock, "A VSLI-compatible high-speed silicon photodetector for optical data link applications," IEEE Trans. Electron Devices 43, 1054-1060 (1996).
[CrossRef]

J. Appl. Phys. (1)

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films--implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (1992).
[CrossRef]

J. Photochem. Photobiol. (2)

G. A. Kumar, V. Thomas, G. Jose, N. V. Unnikrishnan, and V. P. N. Nampoori, "Energy transfer in Rh 6G:Rh B system in PMMA matrix under cw laser excitation," J. Photochem. Photobiol. A 153, 145-151 (2002).
[CrossRef]

H. Suzuki, "Organic light-emitting materials and devices for optical communication technology," J. Photochem. Photobiol. A 166, 155-161 (2004).
[CrossRef]

J. Phys. Chem. B (1)

R. S. Roller and M. A. Winnik, "The determination of the Foerster distance (R0) for phenanthrene and anthracene Derivatives in poly(methyl methacrylate) films," J. Phys. Chem. B 109, 12261-12269 (2005).
[CrossRef]

Nature (1)

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

Photochem. Photobiol. (1)

H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Synth. Met. (1)

A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, "Enhanced photostability of dye molecules trapped in solid xerogel matrixes," Synth. Met. 81, 305-308 (1996).
[CrossRef]

Other (2)

P. Sharma, "Polymeric thin films for integrated optics," Ph.D. dissertation (University of Durham, 1992).

N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

LDS821 (b) Perylene Orange.

Fig. 2
Fig. 2

(i) Perylene Orange absorption, (ii) Perylene Orange emission, (iii) LDS821 absorption, and (iv) LDS821 emission.

Fig. 3
Fig. 3

Normalized LDS821 fluorescence following a 532 nm irradiation ( 37 mJ cm 2 pulse 1 , 2   Hz, λ obs = 816   nm ) for 4.75 × 10−3 M LDS821∕PMMA samples in an oxygen environment ( 245   Torr ) ○ and under vacuum ●. ■ designates the normalized fluorescence for vacuum samples exposed to ambient atmosphere for 2 and 4 min following irradiation under vacuum. The dashed line designates a 50 % fluorescence decrease.

Fig. 4
Fig. 4

Normalized fluorescence following a 532 nm irradiation ( 17 mJ cm 2 pulse 1 , 20   Hz ) for 4.75 × 10 3 M   LDS821 / 1 .9 × 10 3 Perylene  Orange / PMMA samples under ambient conditions ●, ■, and under vacuum ○, ☐. The circles and squares denote fluorescence observed at 580 and 750   nm , respectively. The exposed points designate fluorescence collected for vacuum samples exposed to the atmosphere for 5 and 10 min.

Fig. 5
Fig. 5

Normalized Perylene Orange fluorescence following a 532 nm irradiation ( 9 mJ cm 2 pulse - 1 , 10 Hz , λ obs = 580 nm ) for 4.75 × 10 3   M LDS821∕ 2 .38 × 10 3   M Perylene Orange∕PMMA, ○, and 2.38 × 10 3 Perylene Orange∕PMMA, ☐. ● designates Perylene Orange fluorescence from 4.75 × 10 3   M LDS821∕ 2.38 × 10 - 3 M Perylene Orange∕PMMA in which the initial normalized intensity has been scaled to correct for a 4 .75 × 10 3   M LDS821 quenching.

Fig. 6
Fig. 6

Normalized Perylene Orange fluorescence observed at 580 nm following a 532 nm irradiation for 4 .75 × 10 3   M LDS821∕ 1 .9 × 10 3 Perylene Orange∕PMMA, at 15 ●, 48 ☐, and 95   O   mJ   cm 2 pulse 1 laser fluence.

Fig. 7
Fig. 7

Normalized LDS821 fluorescence observed at 750   nm following a 532   nm irradiation ( 40   mJ   cm 2 pulse 1 , 20   Hz ) for 4.75 × 10 3   M LDS821∕PMMA with 0 M (▼), 1 .9 × 10 3   M (○) and 1 .42 × 10 2   M (♢) Perylene Orange.

Fig. 8
Fig. 8

LDS821 fluorescence as a function of Perylene Orange∕LDS821 ratio dispersed in PMMA. The LDS821 concentration is 4.75 × 10 3   M .

Fig. 9
Fig. 9

Stern–Volmer plot of Perylene Orange fluorescence following a 514   nm excitation as a function of LDS821 concentration in PMMA. The line represents a linear regression fit.

Tables (1)

Tables Icon

Table 1 Energy Transfer Parameters for λobs = 550 nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = 1 I D I OD ,
P DA = 1 τ OD ( I OD I D 1 ) .
τ OD τ 0 = 1 + k ET τ OD [ LDS 821 ] .
R 0 = 7.35 [ A ] 1 / 3 .

Metrics