Abstract

Snow is a scattering-dominated medium whose scattering is independent of wavelength at 350600  nm. The attenuation of solar radiation in snow can be used to infer the spectral absorption coefficient of pure ice, by reference to a known value at 600  nm. The method is applied to clean Antarctic snow; the absorption minimum is at 390  nm, and the inferred absorption coefficient is lower than even the lowest values of the Antarctic Muon and Neutrino Detector Array (AMANDA) experiment on glacier ice: The absorption length is at least 700  m, by comparison with 240  m for AMANDA and 10  m from laboratory attenuation measurements.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Warren, "Optical constants of ice from the ultraviolet to the microwave," Appl. Opt. 23, 1206-1225 (1984).
    [CrossRef] [PubMed]
  2. T. C. Grenfell, S. G. Warren, and P. C. Mullen, "Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths," J. Geophys. Res. 99, 18669-18684 (1994).
    [CrossRef]
  3. S. G. Warren, R. E. Brandt, T. C. Grenfell, and C. P. McKay, "Snowball Earth: ice thickness on the tropical ocean," J. Geophys. Res. (Oceans) 107C, 3167, doi: (2002).
    [CrossRef]
  4. F. Sauberer, "Die spektrale Strahlungsdurchlässigkeit des Eises" [The spectral transmissivity of ice] Wetter Leben 2, 193-197 (1950).
  5. T. C. Grenfell and D. K. Perovich, "Radiation absorption coefficients of polycrystalline ice from 400 to 1400 nm," J. Geophys. Res. 86, 7447-7450 (1981).
    [CrossRef]
  6. D. K. Perovich and J. W. Govoni, "Absorption coefficients of ice from 250 to 400 nm," Geophys. Res. Lett. 18, 1233-1235 (1991).
    [CrossRef]
  7. P. B. Price and L. Bergström, "Optical properties of deep ice at the South Pole: scattering," Appl. Opt. 36, 4181-4194 (1997).
    [CrossRef] [PubMed]
  8. P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, V. Kandhadai, A. Karle, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. Yodh, "UV and optical light transmission properties in deep ice at the South Pole," Geophys. Res. Lett. 24, 1355-1358 (1997).
    [CrossRef]
  9. P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, K. Engel, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, A. Karle, V. Kandhadai, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. M. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. B. Yodh, "Optical properties of deep ice at the South Pole: absorption," Appl. Opt. 36, 4168-4180 (1997).
    [CrossRef] [PubMed]
  10. K. Woschnagg, "Optical properties of South Pole ice at depths from 140 to 2300 meters," in Proceedings of the 26th International Cosmic Ray Conference, B.L.Dingus, D.B.Kieda, and M.H.Salamon, eds. (American Institute of Physics, 2000), Vol. 2, pp. 200-203.
  11. K. Woschnagg, Department of Physics, 366 LeConte Hall, University of California, Berkeley, Calif. 94720, and the AMANDA collaboration have submitted a manuscript called "Optical properties of deep glacial ice at the South Pole" to the Journal of Geophysical Research.
  12. A. Minton, "The far-ultraviolet spectrum of ice," J. Phys. Chem. 75, 1162-1164 (1971).
    [CrossRef]
  13. H. K. Hughes, "Suggested nomenclature in applied spectroscopy," Anal. Chem. 24, 1349-1354 (1952).
    [CrossRef]
  14. A. Minton, National Institutes of Health, Bethesda, Maryland (personal communication, 1985).
  15. S. G. Warren and E. P. Shettle, "Optical constants of ice in the infrared atmospheric windows," in Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 103-106.
  16. K. Woschnagg and P. B. Price, "Temperature dependence of absorption in ice at 532 nm," Appl. Opt. 40, 2496-2500 (2001).
    [CrossRef]
  17. Y. D. He and P. B. Price, "Remote sensing of dust in deep ice at the South Pole," J. Geophys. Res. 103, 17041-17056 (1998).
    [CrossRef]
  18. I. Allison, R. E. Brandt, and S. G. Warren, "East Antarctic sea ice: albedo, thickness distribution and snow cover," J. Geophys. Res. (Oceans) 98, 12417-12429 (1993).
    [CrossRef]
  19. T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
    [CrossRef]
  20. S. G. Warren, R. E. Brandt, and R. D. Boime, "Blue ice and green ice," Antarct. J. U.S. 28, 255-256 (1993).
  21. R. E. Brandt, S. G. Warren, A. P. Worby, and T. C. Grenfell, "Surface albedo of the Antarctic sea-ice zone," J. Clim. 18, 3606-3622 (2005).
    [CrossRef]
  22. S. G. Warren, C. S. Roesler, and R. E. Brandt, "Solar radiation processes in the East Antarctic sea ice zone," Antarct. J. U.S. 32, 185-187 (1997).
  23. S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
    [CrossRef]
  24. T. C. Grenfell and D. K. Perovich, "Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea," J. Geophys. Res. 89, 3573-3580 (1984).
    [CrossRef]
  25. E. M. Patterson, D. A. Gillette, and B. H. Stockton, "Complex index of refraction between 300 and 700 nm for Saharan aerosols," J. Geophys. Res. 82, 3153-3160 (1977).
    [CrossRef]
  26. S. Gerland, G. E. Liston, J.-G. Winther, J. B. Øerbæk, and B. V. Ivanov, "Attenuation of solar radiation in Arctic snow: field observations and modelling," Ann. Glaciol. 31, 364-368 (2000).
    [CrossRef]
  27. S. G. Warren and A. D. Clarke, "Soot in the atmosphere and snow surface of Antarctica," J. Geophys. Res. 95, 1811-1816 (1990).
    [CrossRef]
  28. C. F. Bohren, "Colors of snow, frozen waterfalls, and icebergs," J. Opt. Soc. Am. 73, 1646-1652 (1983).
    [CrossRef]
  29. P. J. Stephenson, "Some considerations of snow metamorphism in the Antarctic ice sheet in the light of ice crystal studies," in Physics of Snow and Ice, H.Oura, ed. (Bunyeido, 1967), pp. 725-740.
  30. G. H. Liljequist, "Energy exchange of an Antarctic snow-field: short-wave radiation (Maudheim 71°01′S, 10°65′W)," Norwegian-British-Swedish Antarctic Expedition, 1949-1952: Scientific Results (Norsk Polarinstitutt, 1956), Vol. 2(1A).
  31. T. C. Grenfell and G. A. Maykut, "The optical properties of ice and snow in the Arctic Basin," J. Glaciol. 18, 445-463 (1977).
  32. S. G. Warren, "Optical properties of snow," Rev. Geophys. Space Phys. 20, 67-89 (1982).
    [CrossRef]
  33. E. R. LaChapelle, Field Guide to Snow Crystals (University of Washington Press, 1969).
  34. W. J. Wiscombe and S. G. Warren, "A model for the spectral albedo of snow. I: Pure snow," J. Atmos. Sci. 37, 2712-2733 (1980).
    [CrossRef]
  35. D. Beaglehole, B. Ramanathan, and J. Rumberg, "The UV to IR transmittance of Antarctic snow," J. Geophys. Res. 103, 8849-8857 (1998).
    [CrossRef]
  36. S. Bourgeois, "Extinction of solar radiation within snow cover," M. S. thesis (Eidgenössische Technische Hochschule, Zürich, Switzerland, 2002).
  37. E. Raschke and A. Ohmura, "Radiation budget of the climate system," in Observed Global Climate, M.Hantel, ed. (Springer, 2005), Chap. 4.
  38. W. Haeberli, "Sahara dust in the Alps--a short review," Z. Gletscherkunde Glazialgeol. 13, 206-208 (1977).
  39. M. D. King and W. R. Simpson, "Extinction of UV radiation in Arctic snow at Alert, Canada (82°N)," J. Geophys. Res. 106, 12499-12507 (2001).
    [CrossRef]
  40. M. Kuhn and L. Siogas, "Spectroscopic studies at McMurdo, South Pole and Siple Stations during the austral summer 1977-78," Antarct. J. U.S. 13, 178-179 (1978).
  41. M. Kuhn, University of Innsbruck (personal communication, 1984).
  42. R. E. Brandt and S. G. Warren, "Solar heating rates and temperature profiles in Antarctic snow and ice," J. Glaciol. 39, 99-110 (1993).
  43. C. F. Bohren, "Multiple scattering of light and some of its observable consequences," Am. J. Phys. 55, 524-533 (1987).
    [CrossRef]
  44. W. J. Wiscombe, "Improved Mie scattering algorithms," Appl. Opt. 19, 1505-1509 (1980).
    [CrossRef] [PubMed]
  45. T. C. Grenfell, D. K. Perovich, and J. A. Ogren, "Spectral albedos of an alpine snowpack," Cold Regions Sci. Technol. 4, 121-127 (1981).
    [CrossRef]
  46. T. C. Grenfell and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation," J. Geophys. Res. 104, 31697-31709 (1999).
    [CrossRef]
  47. S. P. Neshyba, T. C. Grenfell, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: II. Hexagonal columns and plates," J. Geophys. Res 108D, 4448, doi: (2003).
    [CrossRef]
  48. T. C. Grenfell, S. P. Neshyba, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates," J. Geophys. Res. 110D, doi: (2005).
    [CrossRef]
  49. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  50. B. Light, Applied Physics Laboratory, University of Washington (personal communication, 2006).
  51. B. Light, G. A. Maykut, and T. C. Grenfell, "A two-dimensional Monte Carlo model of radiative transfer in sea ice," J. Geophys. Res. 108C, 3219, doi: (2003).
    [CrossRef]
  52. A. Royer, M. DeAngelis, and J. R. Petit, "A 30,000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models," Clim. Change 5, 381-412 (1983).
  53. M. Kumai, "Identification of nuclei and concentrations of chemical species in snow crystals sampled at the South Pole," J. Atmos. Sci. 33, 833-841 (1976).
    [CrossRef]
  54. S. G. Warren and W. J. Wiscombe, "A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols," J. Atmos. Sci. 37, 2734-2745 (1980).
    [CrossRef]
  55. A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, "Aerosol light absorption measurement techniques: analysis and intercomparisons," Atmos. Environ. 21, 1455-1465 (1987).
  56. T. C. Bond and R. W. Bergstrom, "Light absorption by carbonaceous particles: an investigative review," Aerosol Sci. Technol. 40, 27-67 (2006).
    [CrossRef]
  57. P. Chylek, V. Ramaswamy, and V. Srivastava, "Albedo of soot-contaminated snow," J. Geophys. Res. 88, 10837-10843 (1983).
    [CrossRef]
  58. C. F. Bohren, "Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles," J. Atmos. Sci. 43, 468-475 (1986).
    [CrossRef]
  59. P. B. Price, K. Woschnagg, and D. Chirkin, "Age vs depth of glacial ice at South Pole," Geophys. Res. Lett. 27, 2129-2132 (2000).
    [CrossRef]
  60. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  61. A. D. Clarke and K. J. Noone, "Soot in the Arctic snowpack: a cause for perturbations in radiative transfer," Atmos. Environ. 19, 2045-2053 (1985).
    [CrossRef]
  62. T. Bond, Department of Civil and Environmental Engineering, University of Illinois (personal communication, 2005).

2006

T. C. Bond and R. W. Bergstrom, "Light absorption by carbonaceous particles: an investigative review," Aerosol Sci. Technol. 40, 27-67 (2006).
[CrossRef]

2005

R. E. Brandt, S. G. Warren, A. P. Worby, and T. C. Grenfell, "Surface albedo of the Antarctic sea-ice zone," J. Clim. 18, 3606-3622 (2005).
[CrossRef]

T. C. Grenfell, S. P. Neshyba, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates," J. Geophys. Res. 110D, doi: (2005).
[CrossRef]

2003

B. Light, G. A. Maykut, and T. C. Grenfell, "A two-dimensional Monte Carlo model of radiative transfer in sea ice," J. Geophys. Res. 108C, 3219, doi: (2003).
[CrossRef]

S. P. Neshyba, T. C. Grenfell, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: II. Hexagonal columns and plates," J. Geophys. Res 108D, 4448, doi: (2003).
[CrossRef]

2002

S. G. Warren, R. E. Brandt, T. C. Grenfell, and C. P. McKay, "Snowball Earth: ice thickness on the tropical ocean," J. Geophys. Res. (Oceans) 107C, 3167, doi: (2002).
[CrossRef]

2001

M. D. King and W. R. Simpson, "Extinction of UV radiation in Arctic snow at Alert, Canada (82°N)," J. Geophys. Res. 106, 12499-12507 (2001).
[CrossRef]

K. Woschnagg and P. B. Price, "Temperature dependence of absorption in ice at 532 nm," Appl. Opt. 40, 2496-2500 (2001).
[CrossRef]

2000

P. B. Price, K. Woschnagg, and D. Chirkin, "Age vs depth of glacial ice at South Pole," Geophys. Res. Lett. 27, 2129-2132 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

S. Gerland, G. E. Liston, J.-G. Winther, J. B. Øerbæk, and B. V. Ivanov, "Attenuation of solar radiation in Arctic snow: field observations and modelling," Ann. Glaciol. 31, 364-368 (2000).
[CrossRef]

1999

T. C. Grenfell and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation," J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

1998

D. Beaglehole, B. Ramanathan, and J. Rumberg, "The UV to IR transmittance of Antarctic snow," J. Geophys. Res. 103, 8849-8857 (1998).
[CrossRef]

Y. D. He and P. B. Price, "Remote sensing of dust in deep ice at the South Pole," J. Geophys. Res. 103, 17041-17056 (1998).
[CrossRef]

1997

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, V. Kandhadai, A. Karle, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. Yodh, "UV and optical light transmission properties in deep ice at the South Pole," Geophys. Res. Lett. 24, 1355-1358 (1997).
[CrossRef]

S. G. Warren, C. S. Roesler, and R. E. Brandt, "Solar radiation processes in the East Antarctic sea ice zone," Antarct. J. U.S. 32, 185-187 (1997).

P. B. Price and L. Bergström, "Optical properties of deep ice at the South Pole: scattering," Appl. Opt. 36, 4181-4194 (1997).
[CrossRef] [PubMed]

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, K. Engel, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, A. Karle, V. Kandhadai, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. M. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. B. Yodh, "Optical properties of deep ice at the South Pole: absorption," Appl. Opt. 36, 4168-4180 (1997).
[CrossRef] [PubMed]

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

1994

T. C. Grenfell, S. G. Warren, and P. C. Mullen, "Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths," J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

1993

I. Allison, R. E. Brandt, and S. G. Warren, "East Antarctic sea ice: albedo, thickness distribution and snow cover," J. Geophys. Res. (Oceans) 98, 12417-12429 (1993).
[CrossRef]

S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
[CrossRef]

S. G. Warren, R. E. Brandt, and R. D. Boime, "Blue ice and green ice," Antarct. J. U.S. 28, 255-256 (1993).

R. E. Brandt and S. G. Warren, "Solar heating rates and temperature profiles in Antarctic snow and ice," J. Glaciol. 39, 99-110 (1993).

1991

D. K. Perovich and J. W. Govoni, "Absorption coefficients of ice from 250 to 400 nm," Geophys. Res. Lett. 18, 1233-1235 (1991).
[CrossRef]

1990

S. G. Warren and A. D. Clarke, "Soot in the atmosphere and snow surface of Antarctica," J. Geophys. Res. 95, 1811-1816 (1990).
[CrossRef]

1987

C. F. Bohren, "Multiple scattering of light and some of its observable consequences," Am. J. Phys. 55, 524-533 (1987).
[CrossRef]

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, "Aerosol light absorption measurement techniques: analysis and intercomparisons," Atmos. Environ. 21, 1455-1465 (1987).

1986

C. F. Bohren, "Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles," J. Atmos. Sci. 43, 468-475 (1986).
[CrossRef]

1985

A. D. Clarke and K. J. Noone, "Soot in the Arctic snowpack: a cause for perturbations in radiative transfer," Atmos. Environ. 19, 2045-2053 (1985).
[CrossRef]

1984

S. G. Warren, "Optical constants of ice from the ultraviolet to the microwave," Appl. Opt. 23, 1206-1225 (1984).
[CrossRef] [PubMed]

T. C. Grenfell and D. K. Perovich, "Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea," J. Geophys. Res. 89, 3573-3580 (1984).
[CrossRef]

1983

A. Royer, M. DeAngelis, and J. R. Petit, "A 30,000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models," Clim. Change 5, 381-412 (1983).

C. F. Bohren, "Colors of snow, frozen waterfalls, and icebergs," J. Opt. Soc. Am. 73, 1646-1652 (1983).
[CrossRef]

P. Chylek, V. Ramaswamy, and V. Srivastava, "Albedo of soot-contaminated snow," J. Geophys. Res. 88, 10837-10843 (1983).
[CrossRef]

1982

S. G. Warren, "Optical properties of snow," Rev. Geophys. Space Phys. 20, 67-89 (1982).
[CrossRef]

1981

T. C. Grenfell, D. K. Perovich, and J. A. Ogren, "Spectral albedos of an alpine snowpack," Cold Regions Sci. Technol. 4, 121-127 (1981).
[CrossRef]

T. C. Grenfell and D. K. Perovich, "Radiation absorption coefficients of polycrystalline ice from 400 to 1400 nm," J. Geophys. Res. 86, 7447-7450 (1981).
[CrossRef]

1980

W. J. Wiscombe and S. G. Warren, "A model for the spectral albedo of snow. I: Pure snow," J. Atmos. Sci. 37, 2712-2733 (1980).
[CrossRef]

S. G. Warren and W. J. Wiscombe, "A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols," J. Atmos. Sci. 37, 2734-2745 (1980).
[CrossRef]

W. J. Wiscombe, "Improved Mie scattering algorithms," Appl. Opt. 19, 1505-1509 (1980).
[CrossRef] [PubMed]

1978

M. Kuhn and L. Siogas, "Spectroscopic studies at McMurdo, South Pole and Siple Stations during the austral summer 1977-78," Antarct. J. U.S. 13, 178-179 (1978).

1977

W. Haeberli, "Sahara dust in the Alps--a short review," Z. Gletscherkunde Glazialgeol. 13, 206-208 (1977).

E. M. Patterson, D. A. Gillette, and B. H. Stockton, "Complex index of refraction between 300 and 700 nm for Saharan aerosols," J. Geophys. Res. 82, 3153-3160 (1977).
[CrossRef]

T. C. Grenfell and G. A. Maykut, "The optical properties of ice and snow in the Arctic Basin," J. Glaciol. 18, 445-463 (1977).

1976

M. Kumai, "Identification of nuclei and concentrations of chemical species in snow crystals sampled at the South Pole," J. Atmos. Sci. 33, 833-841 (1976).
[CrossRef]

1971

A. Minton, "The far-ultraviolet spectrum of ice," J. Phys. Chem. 75, 1162-1164 (1971).
[CrossRef]

1952

H. K. Hughes, "Suggested nomenclature in applied spectroscopy," Anal. Chem. 24, 1349-1354 (1952).
[CrossRef]

1950

F. Sauberer, "Die spektrale Strahlungsdurchlässigkeit des Eises" [The spectral transmissivity of ice] Wetter Leben 2, 193-197 (1950).

Allison, I.

I. Allison, R. E. Brandt, and S. G. Warren, "East Antarctic sea ice: albedo, thickness distribution and snow cover," J. Geophys. Res. (Oceans) 98, 12417-12429 (1993).
[CrossRef]

S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
[CrossRef]

Aoki, T.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Askebjer, P.

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, K. Engel, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, A. Karle, V. Kandhadai, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. M. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. B. Yodh, "Optical properties of deep ice at the South Pole: absorption," Appl. Opt. 36, 4168-4180 (1997).
[CrossRef] [PubMed]

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, V. Kandhadai, A. Karle, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. Yodh, "UV and optical light transmission properties in deep ice at the South Pole," Geophys. Res. Lett. 24, 1355-1358 (1997).
[CrossRef]

Barwick, S. W.

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, V. Kandhadai, A. Karle, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. Yodh, "UV and optical light transmission properties in deep ice at the South Pole," Geophys. Res. Lett. 24, 1355-1358 (1997).
[CrossRef]

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, K. Engel, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, A. Karle, V. Kandhadai, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. M. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. B. Yodh, "Optical properties of deep ice at the South Pole: absorption," Appl. Opt. 36, 4168-4180 (1997).
[CrossRef] [PubMed]

Beaglehole, D.

D. Beaglehole, B. Ramanathan, and J. Rumberg, "The UV to IR transmittance of Antarctic snow," J. Geophys. Res. 103, 8849-8857 (1998).
[CrossRef]

Bergstrom, R. W.

T. C. Bond and R. W. Bergstrom, "Light absorption by carbonaceous particles: an investigative review," Aerosol Sci. Technol. 40, 27-67 (2006).
[CrossRef]

Bergström, L.

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, K. Engel, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, A. Karle, V. Kandhadai, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. M. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. B. Yodh, "Optical properties of deep ice at the South Pole: absorption," Appl. Opt. 36, 4168-4180 (1997).
[CrossRef] [PubMed]

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, V. Kandhadai, A. Karle, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. Yodh, "UV and optical light transmission properties in deep ice at the South Pole," Geophys. Res. Lett. 24, 1355-1358 (1997).
[CrossRef]

P. B. Price and L. Bergström, "Optical properties of deep ice at the South Pole: scattering," Appl. Opt. 36, 4181-4194 (1997).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren, "Multiple scattering of light and some of its observable consequences," Am. J. Phys. 55, 524-533 (1987).
[CrossRef]

C. F. Bohren, "Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles," J. Atmos. Sci. 43, 468-475 (1986).
[CrossRef]

C. F. Bohren, "Colors of snow, frozen waterfalls, and icebergs," J. Opt. Soc. Am. 73, 1646-1652 (1983).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boime, R. D.

S. G. Warren, R. E. Brandt, and R. D. Boime, "Blue ice and green ice," Antarct. J. U.S. 28, 255-256 (1993).

Bond, T.

T. Bond, Department of Civil and Environmental Engineering, University of Illinois (personal communication, 2005).

Bond, T. C.

T. C. Bond and R. W. Bergstrom, "Light absorption by carbonaceous particles: an investigative review," Aerosol Sci. Technol. 40, 27-67 (2006).
[CrossRef]

Bourgeois, S.

S. Bourgeois, "Extinction of solar radiation within snow cover," M. S. thesis (Eidgenössische Technische Hochschule, Zürich, Switzerland, 2002).

Brandt, R. E.

R. E. Brandt, S. G. Warren, A. P. Worby, and T. C. Grenfell, "Surface albedo of the Antarctic sea-ice zone," J. Clim. 18, 3606-3622 (2005).
[CrossRef]

S. G. Warren, R. E. Brandt, T. C. Grenfell, and C. P. McKay, "Snowball Earth: ice thickness on the tropical ocean," J. Geophys. Res. (Oceans) 107C, 3167, doi: (2002).
[CrossRef]

S. G. Warren, C. S. Roesler, and R. E. Brandt, "Solar radiation processes in the East Antarctic sea ice zone," Antarct. J. U.S. 32, 185-187 (1997).

I. Allison, R. E. Brandt, and S. G. Warren, "East Antarctic sea ice: albedo, thickness distribution and snow cover," J. Geophys. Res. (Oceans) 98, 12417-12429 (1993).
[CrossRef]

R. E. Brandt and S. G. Warren, "Solar heating rates and temperature profiles in Antarctic snow and ice," J. Glaciol. 39, 99-110 (1993).

S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
[CrossRef]

S. G. Warren, R. E. Brandt, and R. D. Boime, "Blue ice and green ice," Antarct. J. U.S. 28, 255-256 (1993).

Chirkin, D.

P. B. Price, K. Woschnagg, and D. Chirkin, "Age vs depth of glacial ice at South Pole," Geophys. Res. Lett. 27, 2129-2132 (2000).
[CrossRef]

Chylek, P.

P. Chylek, V. Ramaswamy, and V. Srivastava, "Albedo of soot-contaminated snow," J. Geophys. Res. 88, 10837-10843 (1983).
[CrossRef]

Clarke, A. D.

S. G. Warren and A. D. Clarke, "Soot in the atmosphere and snow surface of Antarctica," J. Geophys. Res. 95, 1811-1816 (1990).
[CrossRef]

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, "Aerosol light absorption measurement techniques: analysis and intercomparisons," Atmos. Environ. 21, 1455-1465 (1987).

A. D. Clarke and K. J. Noone, "Soot in the Arctic snowpack: a cause for perturbations in radiative transfer," Atmos. Environ. 19, 2045-2053 (1985).
[CrossRef]

Covert, D. S.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, "Aerosol light absorption measurement techniques: analysis and intercomparisons," Atmos. Environ. 21, 1455-1465 (1987).

DeAngelis, M.

A. Royer, M. DeAngelis, and J. R. Petit, "A 30,000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models," Clim. Change 5, 381-412 (1983).

Fry, E. S.

Fukabori, M.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Gerland, S.

S. Gerland, G. E. Liston, J.-G. Winther, J. B. Øerbæk, and B. V. Ivanov, "Attenuation of solar radiation in Arctic snow: field observations and modelling," Ann. Glaciol. 31, 364-368 (2000).
[CrossRef]

Gillette, D. A.

E. M. Patterson, D. A. Gillette, and B. H. Stockton, "Complex index of refraction between 300 and 700 nm for Saharan aerosols," J. Geophys. Res. 82, 3153-3160 (1977).
[CrossRef]

Goodwin, I. D.

S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
[CrossRef]

Govoni, J. W.

D. K. Perovich and J. W. Govoni, "Absorption coefficients of ice from 250 to 400 nm," Geophys. Res. Lett. 18, 1233-1235 (1991).
[CrossRef]

Grenfell, T. C.

R. E. Brandt, S. G. Warren, A. P. Worby, and T. C. Grenfell, "Surface albedo of the Antarctic sea-ice zone," J. Clim. 18, 3606-3622 (2005).
[CrossRef]

T. C. Grenfell, S. P. Neshyba, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates," J. Geophys. Res. 110D, doi: (2005).
[CrossRef]

B. Light, G. A. Maykut, and T. C. Grenfell, "A two-dimensional Monte Carlo model of radiative transfer in sea ice," J. Geophys. Res. 108C, 3219, doi: (2003).
[CrossRef]

S. P. Neshyba, T. C. Grenfell, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: II. Hexagonal columns and plates," J. Geophys. Res 108D, 4448, doi: (2003).
[CrossRef]

S. G. Warren, R. E. Brandt, T. C. Grenfell, and C. P. McKay, "Snowball Earth: ice thickness on the tropical ocean," J. Geophys. Res. (Oceans) 107C, 3167, doi: (2002).
[CrossRef]

T. C. Grenfell and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation," J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

T. C. Grenfell, S. G. Warren, and P. C. Mullen, "Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths," J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

T. C. Grenfell and D. K. Perovich, "Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea," J. Geophys. Res. 89, 3573-3580 (1984).
[CrossRef]

T. C. Grenfell and D. K. Perovich, "Radiation absorption coefficients of polycrystalline ice from 400 to 1400 nm," J. Geophys. Res. 86, 7447-7450 (1981).
[CrossRef]

T. C. Grenfell, D. K. Perovich, and J. A. Ogren, "Spectral albedos of an alpine snowpack," Cold Regions Sci. Technol. 4, 121-127 (1981).
[CrossRef]

T. C. Grenfell and G. A. Maykut, "The optical properties of ice and snow in the Arctic Basin," J. Glaciol. 18, 445-463 (1977).

Hachikubo, A.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Haeberli, W.

W. Haeberli, "Sahara dust in the Alps--a short review," Z. Gletscherkunde Glazialgeol. 13, 206-208 (1977).

He, Y. D.

Y. D. He and P. B. Price, "Remote sensing of dust in deep ice at the South Pole," J. Geophys. Res. 103, 17041-17056 (1998).
[CrossRef]

Heintzenberg, J.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, "Aerosol light absorption measurement techniques: analysis and intercomparisons," Atmos. Environ. 21, 1455-1465 (1987).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hughes, H. K.

H. K. Hughes, "Suggested nomenclature in applied spectroscopy," Anal. Chem. 24, 1349-1354 (1952).
[CrossRef]

Ivanov, B. V.

S. Gerland, G. E. Liston, J.-G. Winther, J. B. Øerbæk, and B. V. Ivanov, "Attenuation of solar radiation in Arctic snow: field observations and modelling," Ann. Glaciol. 31, 364-368 (2000).
[CrossRef]

King, M. D.

M. D. King and W. R. Simpson, "Extinction of UV radiation in Arctic snow at Alert, Canada (82°N)," J. Geophys. Res. 106, 12499-12507 (2001).
[CrossRef]

Kuhn, M.

M. Kuhn and L. Siogas, "Spectroscopic studies at McMurdo, South Pole and Siple Stations during the austral summer 1977-78," Antarct. J. U.S. 13, 178-179 (1978).

M. Kuhn, University of Innsbruck (personal communication, 1984).

Kumai, M.

M. Kumai, "Identification of nuclei and concentrations of chemical species in snow crystals sampled at the South Pole," J. Atmos. Sci. 33, 833-841 (1976).
[CrossRef]

LaChapelle, E. R.

E. R. LaChapelle, Field Guide to Snow Crystals (University of Washington Press, 1969).

Light, B.

B. Light, G. A. Maykut, and T. C. Grenfell, "A two-dimensional Monte Carlo model of radiative transfer in sea ice," J. Geophys. Res. 108C, 3219, doi: (2003).
[CrossRef]

B. Light, Applied Physics Laboratory, University of Washington (personal communication, 2006).

Liljequist, G. H.

G. H. Liljequist, "Energy exchange of an Antarctic snow-field: short-wave radiation (Maudheim 71°01′S, 10°65′W)," Norwegian-British-Swedish Antarctic Expedition, 1949-1952: Scientific Results (Norsk Polarinstitutt, 1956), Vol. 2(1A).

Liston, G. E.

S. Gerland, G. E. Liston, J.-G. Winther, J. B. Øerbæk, and B. V. Ivanov, "Attenuation of solar radiation in Arctic snow: field observations and modelling," Ann. Glaciol. 31, 364-368 (2000).
[CrossRef]

Maykut, G. A.

B. Light, G. A. Maykut, and T. C. Grenfell, "A two-dimensional Monte Carlo model of radiative transfer in sea ice," J. Geophys. Res. 108C, 3219, doi: (2003).
[CrossRef]

T. C. Grenfell and G. A. Maykut, "The optical properties of ice and snow in the Arctic Basin," J. Glaciol. 18, 445-463 (1977).

McKay, C. P.

S. G. Warren, R. E. Brandt, T. C. Grenfell, and C. P. McKay, "Snowball Earth: ice thickness on the tropical ocean," J. Geophys. Res. (Oceans) 107C, 3167, doi: (2002).
[CrossRef]

Minton, A.

A. Minton, "The far-ultraviolet spectrum of ice," J. Phys. Chem. 75, 1162-1164 (1971).
[CrossRef]

A. Minton, National Institutes of Health, Bethesda, Maryland (personal communication, 1985).

Morgan, V. I.

S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
[CrossRef]

Mullen, P. C.

T. C. Grenfell, S. G. Warren, and P. C. Mullen, "Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths," J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

Neshyba, S. P.

T. C. Grenfell, S. P. Neshyba, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates," J. Geophys. Res. 110D, doi: (2005).
[CrossRef]

S. P. Neshyba, T. C. Grenfell, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: II. Hexagonal columns and plates," J. Geophys. Res 108D, 4448, doi: (2003).
[CrossRef]

Nishio, F.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Noone, K. J.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, "Aerosol light absorption measurement techniques: analysis and intercomparisons," Atmos. Environ. 21, 1455-1465 (1987).

A. D. Clarke and K. J. Noone, "Soot in the Arctic snowpack: a cause for perturbations in radiative transfer," Atmos. Environ. 19, 2045-2053 (1985).
[CrossRef]

Øerbæk, J. B.

S. Gerland, G. E. Liston, J.-G. Winther, J. B. Øerbæk, and B. V. Ivanov, "Attenuation of solar radiation in Arctic snow: field observations and modelling," Ann. Glaciol. 31, 364-368 (2000).
[CrossRef]

Ogren, J. A.

T. C. Grenfell, D. K. Perovich, and J. A. Ogren, "Spectral albedos of an alpine snowpack," Cold Regions Sci. Technol. 4, 121-127 (1981).
[CrossRef]

Ohmura, A.

E. Raschke and A. Ohmura, "Radiation budget of the climate system," in Observed Global Climate, M.Hantel, ed. (Springer, 2005), Chap. 4.

Patterson, E. M.

E. M. Patterson, D. A. Gillette, and B. H. Stockton, "Complex index of refraction between 300 and 700 nm for Saharan aerosols," J. Geophys. Res. 82, 3153-3160 (1977).
[CrossRef]

Perovich, D. K.

D. K. Perovich and J. W. Govoni, "Absorption coefficients of ice from 250 to 400 nm," Geophys. Res. Lett. 18, 1233-1235 (1991).
[CrossRef]

T. C. Grenfell and D. K. Perovich, "Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea," J. Geophys. Res. 89, 3573-3580 (1984).
[CrossRef]

T. C. Grenfell and D. K. Perovich, "Radiation absorption coefficients of polycrystalline ice from 400 to 1400 nm," J. Geophys. Res. 86, 7447-7450 (1981).
[CrossRef]

T. C. Grenfell, D. K. Perovich, and J. A. Ogren, "Spectral albedos of an alpine snowpack," Cold Regions Sci. Technol. 4, 121-127 (1981).
[CrossRef]

Petit, J. R.

A. Royer, M. DeAngelis, and J. R. Petit, "A 30,000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models," Clim. Change 5, 381-412 (1983).

Pope, R. M.

Price, P. B.

K. Woschnagg and P. B. Price, "Temperature dependence of absorption in ice at 532 nm," Appl. Opt. 40, 2496-2500 (2001).
[CrossRef]

P. B. Price, K. Woschnagg, and D. Chirkin, "Age vs depth of glacial ice at South Pole," Geophys. Res. Lett. 27, 2129-2132 (2000).
[CrossRef]

Y. D. He and P. B. Price, "Remote sensing of dust in deep ice at the South Pole," J. Geophys. Res. 103, 17041-17056 (1998).
[CrossRef]

P. B. Price and L. Bergström, "Optical properties of deep ice at the South Pole: scattering," Appl. Opt. 36, 4181-4194 (1997).
[CrossRef] [PubMed]

Ramanathan, B.

D. Beaglehole, B. Ramanathan, and J. Rumberg, "The UV to IR transmittance of Antarctic snow," J. Geophys. Res. 103, 8849-8857 (1998).
[CrossRef]

Ramaswamy, V.

P. Chylek, V. Ramaswamy, and V. Srivastava, "Albedo of soot-contaminated snow," J. Geophys. Res. 88, 10837-10843 (1983).
[CrossRef]

Raschke, E.

E. Raschke and A. Ohmura, "Radiation budget of the climate system," in Observed Global Climate, M.Hantel, ed. (Springer, 2005), Chap. 4.

Roesler, C. S.

S. G. Warren, C. S. Roesler, and R. E. Brandt, "Solar radiation processes in the East Antarctic sea ice zone," Antarct. J. U.S. 32, 185-187 (1997).

S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
[CrossRef]

Royer, A.

A. Royer, M. DeAngelis, and J. R. Petit, "A 30,000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models," Clim. Change 5, 381-412 (1983).

Rumberg, J.

D. Beaglehole, B. Ramanathan, and J. Rumberg, "The UV to IR transmittance of Antarctic snow," J. Geophys. Res. 103, 8849-8857 (1998).
[CrossRef]

Sauberer, F.

F. Sauberer, "Die spektrale Strahlungsdurchlässigkeit des Eises" [The spectral transmissivity of ice] Wetter Leben 2, 193-197 (1950).

Shettle, E. P.

S. G. Warren and E. P. Shettle, "Optical constants of ice in the infrared atmospheric windows," in Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 103-106.

Simpson, W. R.

M. D. King and W. R. Simpson, "Extinction of UV radiation in Arctic snow at Alert, Canada (82°N)," J. Geophys. Res. 106, 12499-12507 (2001).
[CrossRef]

Siogas, L.

M. Kuhn and L. Siogas, "Spectroscopic studies at McMurdo, South Pole and Siple Stations during the austral summer 1977-78," Antarct. J. U.S. 13, 178-179 (1978).

Srivastava, V.

P. Chylek, V. Ramaswamy, and V. Srivastava, "Albedo of soot-contaminated snow," J. Geophys. Res. 88, 10837-10843 (1983).
[CrossRef]

Stephenson, P. J.

P. J. Stephenson, "Some considerations of snow metamorphism in the Antarctic ice sheet in the light of ice crystal studies," in Physics of Snow and Ice, H.Oura, ed. (Bunyeido, 1967), pp. 725-740.

Stockton, B. H.

E. M. Patterson, D. A. Gillette, and B. H. Stockton, "Complex index of refraction between 300 and 700 nm for Saharan aerosols," J. Geophys. Res. 82, 3153-3160 (1977).
[CrossRef]

Tachibana, Y.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

Warren, S. G.

R. E. Brandt, S. G. Warren, A. P. Worby, and T. C. Grenfell, "Surface albedo of the Antarctic sea-ice zone," J. Clim. 18, 3606-3622 (2005).
[CrossRef]

T. C. Grenfell, S. P. Neshyba, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates," J. Geophys. Res. 110D, doi: (2005).
[CrossRef]

S. P. Neshyba, T. C. Grenfell, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: II. Hexagonal columns and plates," J. Geophys. Res 108D, 4448, doi: (2003).
[CrossRef]

S. G. Warren, R. E. Brandt, T. C. Grenfell, and C. P. McKay, "Snowball Earth: ice thickness on the tropical ocean," J. Geophys. Res. (Oceans) 107C, 3167, doi: (2002).
[CrossRef]

T. C. Grenfell and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation," J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

S. G. Warren, C. S. Roesler, and R. E. Brandt, "Solar radiation processes in the East Antarctic sea ice zone," Antarct. J. U.S. 32, 185-187 (1997).

T. C. Grenfell, S. G. Warren, and P. C. Mullen, "Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths," J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

S. G. Warren, R. E. Brandt, and R. D. Boime, "Blue ice and green ice," Antarct. J. U.S. 28, 255-256 (1993).

S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
[CrossRef]

I. Allison, R. E. Brandt, and S. G. Warren, "East Antarctic sea ice: albedo, thickness distribution and snow cover," J. Geophys. Res. (Oceans) 98, 12417-12429 (1993).
[CrossRef]

R. E. Brandt and S. G. Warren, "Solar heating rates and temperature profiles in Antarctic snow and ice," J. Glaciol. 39, 99-110 (1993).

S. G. Warren and A. D. Clarke, "Soot in the atmosphere and snow surface of Antarctica," J. Geophys. Res. 95, 1811-1816 (1990).
[CrossRef]

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, "Aerosol light absorption measurement techniques: analysis and intercomparisons," Atmos. Environ. 21, 1455-1465 (1987).

S. G. Warren, "Optical constants of ice from the ultraviolet to the microwave," Appl. Opt. 23, 1206-1225 (1984).
[CrossRef] [PubMed]

S. G. Warren, "Optical properties of snow," Rev. Geophys. Space Phys. 20, 67-89 (1982).
[CrossRef]

W. J. Wiscombe and S. G. Warren, "A model for the spectral albedo of snow. I: Pure snow," J. Atmos. Sci. 37, 2712-2733 (1980).
[CrossRef]

S. G. Warren and W. J. Wiscombe, "A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols," J. Atmos. Sci. 37, 2734-2745 (1980).
[CrossRef]

S. G. Warren and E. P. Shettle, "Optical constants of ice in the infrared atmospheric windows," in Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 103-106.

Winther, J.-G.

S. Gerland, G. E. Liston, J.-G. Winther, J. B. Øerbæk, and B. V. Ivanov, "Attenuation of solar radiation in Arctic snow: field observations and modelling," Ann. Glaciol. 31, 364-368 (2000).
[CrossRef]

Wiscombe, W. J.

W. J. Wiscombe and S. G. Warren, "A model for the spectral albedo of snow. I: Pure snow," J. Atmos. Sci. 37, 2712-2733 (1980).
[CrossRef]

S. G. Warren and W. J. Wiscombe, "A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols," J. Atmos. Sci. 37, 2734-2745 (1980).
[CrossRef]

W. J. Wiscombe, "Improved Mie scattering algorithms," Appl. Opt. 19, 1505-1509 (1980).
[CrossRef] [PubMed]

Worby, A. P.

R. E. Brandt, S. G. Warren, A. P. Worby, and T. C. Grenfell, "Surface albedo of the Antarctic sea-ice zone," J. Clim. 18, 3606-3622 (2005).
[CrossRef]

Woschnagg, K.

K. Woschnagg and P. B. Price, "Temperature dependence of absorption in ice at 532 nm," Appl. Opt. 40, 2496-2500 (2001).
[CrossRef]

P. B. Price, K. Woschnagg, and D. Chirkin, "Age vs depth of glacial ice at South Pole," Geophys. Res. Lett. 27, 2129-2132 (2000).
[CrossRef]

K. Woschnagg, "Optical properties of South Pole ice at depths from 140 to 2300 meters," in Proceedings of the 26th International Cosmic Ray Conference, B.L.Dingus, D.B.Kieda, and M.H.Salamon, eds. (American Institute of Physics, 2000), Vol. 2, pp. 200-203.

K. Woschnagg, Department of Physics, 366 LeConte Hall, University of California, Berkeley, Calif. 94720, and the AMANDA collaboration have submitted a manuscript called "Optical properties of deep glacial ice at the South Pole" to the Journal of Geophysical Research.

[The spectral transmissivity of ice] Wetter Leben

F. Sauberer, "Die spektrale Strahlungsdurchlässigkeit des Eises" [The spectral transmissivity of ice] Wetter Leben 2, 193-197 (1950).

Aerosol Sci. Technol.

T. C. Bond and R. W. Bergstrom, "Light absorption by carbonaceous particles: an investigative review," Aerosol Sci. Technol. 40, 27-67 (2006).
[CrossRef]

Am. J. Phys.

C. F. Bohren, "Multiple scattering of light and some of its observable consequences," Am. J. Phys. 55, 524-533 (1987).
[CrossRef]

Anal. Chem.

H. K. Hughes, "Suggested nomenclature in applied spectroscopy," Anal. Chem. 24, 1349-1354 (1952).
[CrossRef]

Ann. Glaciol.

S. Gerland, G. E. Liston, J.-G. Winther, J. B. Øerbæk, and B. V. Ivanov, "Attenuation of solar radiation in Arctic snow: field observations and modelling," Ann. Glaciol. 31, 364-368 (2000).
[CrossRef]

Antarct. J. U.S.

M. Kuhn and L. Siogas, "Spectroscopic studies at McMurdo, South Pole and Siple Stations during the austral summer 1977-78," Antarct. J. U.S. 13, 178-179 (1978).

S. G. Warren, R. E. Brandt, and R. D. Boime, "Blue ice and green ice," Antarct. J. U.S. 28, 255-256 (1993).

S. G. Warren, C. S. Roesler, and R. E. Brandt, "Solar radiation processes in the East Antarctic sea ice zone," Antarct. J. U.S. 32, 185-187 (1997).

Appl. Opt.

Atmos. Environ.

A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert, "Aerosol light absorption measurement techniques: analysis and intercomparisons," Atmos. Environ. 21, 1455-1465 (1987).

A. D. Clarke and K. J. Noone, "Soot in the Arctic snowpack: a cause for perturbations in radiative transfer," Atmos. Environ. 19, 2045-2053 (1985).
[CrossRef]

Clim. Change

A. Royer, M. DeAngelis, and J. R. Petit, "A 30,000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models," Clim. Change 5, 381-412 (1983).

Cold Regions Sci. Technol.

T. C. Grenfell, D. K. Perovich, and J. A. Ogren, "Spectral albedos of an alpine snowpack," Cold Regions Sci. Technol. 4, 121-127 (1981).
[CrossRef]

Geophys. Res. Lett.

P. B. Price, K. Woschnagg, and D. Chirkin, "Age vs depth of glacial ice at South Pole," Geophys. Res. Lett. 27, 2129-2132 (2000).
[CrossRef]

P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, V. Kandhadai, A. Karle, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. Yodh, "UV and optical light transmission properties in deep ice at the South Pole," Geophys. Res. Lett. 24, 1355-1358 (1997).
[CrossRef]

D. K. Perovich and J. W. Govoni, "Absorption coefficients of ice from 250 to 400 nm," Geophys. Res. Lett. 18, 1233-1235 (1991).
[CrossRef]

J. Atmos. Sci.

W. J. Wiscombe and S. G. Warren, "A model for the spectral albedo of snow. I: Pure snow," J. Atmos. Sci. 37, 2712-2733 (1980).
[CrossRef]

M. Kumai, "Identification of nuclei and concentrations of chemical species in snow crystals sampled at the South Pole," J. Atmos. Sci. 33, 833-841 (1976).
[CrossRef]

S. G. Warren and W. J. Wiscombe, "A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols," J. Atmos. Sci. 37, 2734-2745 (1980).
[CrossRef]

C. F. Bohren, "Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles," J. Atmos. Sci. 43, 468-475 (1986).
[CrossRef]

J. Clim.

R. E. Brandt, S. G. Warren, A. P. Worby, and T. C. Grenfell, "Surface albedo of the Antarctic sea-ice zone," J. Clim. 18, 3606-3622 (2005).
[CrossRef]

J. Geophys. Res

S. P. Neshyba, T. C. Grenfell, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: II. Hexagonal columns and plates," J. Geophys. Res 108D, 4448, doi: (2003).
[CrossRef]

J. Geophys. Res.

T. C. Grenfell, S. P. Neshyba, and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates," J. Geophys. Res. 110D, doi: (2005).
[CrossRef]

T. C. Grenfell and S. G. Warren, "Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation," J. Geophys. Res. 104, 31697-31709 (1999).
[CrossRef]

B. Light, G. A. Maykut, and T. C. Grenfell, "A two-dimensional Monte Carlo model of radiative transfer in sea ice," J. Geophys. Res. 108C, 3219, doi: (2003).
[CrossRef]

P. Chylek, V. Ramaswamy, and V. Srivastava, "Albedo of soot-contaminated snow," J. Geophys. Res. 88, 10837-10843 (1983).
[CrossRef]

Y. D. He and P. B. Price, "Remote sensing of dust in deep ice at the South Pole," J. Geophys. Res. 103, 17041-17056 (1998).
[CrossRef]

I. Allison, R. E. Brandt, and S. G. Warren, "East Antarctic sea ice: albedo, thickness distribution and snow cover," J. Geophys. Res. (Oceans) 98, 12417-12429 (1993).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, "Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface," J. Geophys. Res. 105, 10219-10236 (2000).
[CrossRef]

S. G. Warren, C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison, "Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves," J. Geophys. Res. 98, 6921-6928 and 18309 (1993).
[CrossRef]

T. C. Grenfell and D. K. Perovich, "Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea," J. Geophys. Res. 89, 3573-3580 (1984).
[CrossRef]

E. M. Patterson, D. A. Gillette, and B. H. Stockton, "Complex index of refraction between 300 and 700 nm for Saharan aerosols," J. Geophys. Res. 82, 3153-3160 (1977).
[CrossRef]

T. C. Grenfell and D. K. Perovich, "Radiation absorption coefficients of polycrystalline ice from 400 to 1400 nm," J. Geophys. Res. 86, 7447-7450 (1981).
[CrossRef]

T. C. Grenfell, S. G. Warren, and P. C. Mullen, "Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths," J. Geophys. Res. 99, 18669-18684 (1994).
[CrossRef]

S. G. Warren, R. E. Brandt, T. C. Grenfell, and C. P. McKay, "Snowball Earth: ice thickness on the tropical ocean," J. Geophys. Res. (Oceans) 107C, 3167, doi: (2002).
[CrossRef]

D. Beaglehole, B. Ramanathan, and J. Rumberg, "The UV to IR transmittance of Antarctic snow," J. Geophys. Res. 103, 8849-8857 (1998).
[CrossRef]

S. G. Warren and A. D. Clarke, "Soot in the atmosphere and snow surface of Antarctica," J. Geophys. Res. 95, 1811-1816 (1990).
[CrossRef]

M. D. King and W. R. Simpson, "Extinction of UV radiation in Arctic snow at Alert, Canada (82°N)," J. Geophys. Res. 106, 12499-12507 (2001).
[CrossRef]

J. Glaciol.

R. E. Brandt and S. G. Warren, "Solar heating rates and temperature profiles in Antarctic snow and ice," J. Glaciol. 39, 99-110 (1993).

T. C. Grenfell and G. A. Maykut, "The optical properties of ice and snow in the Arctic Basin," J. Glaciol. 18, 445-463 (1977).

J. Opt. Soc. Am.

J. Phys. Chem.

A. Minton, "The far-ultraviolet spectrum of ice," J. Phys. Chem. 75, 1162-1164 (1971).
[CrossRef]

Rev. Geophys. Space Phys.

S. G. Warren, "Optical properties of snow," Rev. Geophys. Space Phys. 20, 67-89 (1982).
[CrossRef]

Z. Gletscherkunde Glazialgeol.

W. Haeberli, "Sahara dust in the Alps--a short review," Z. Gletscherkunde Glazialgeol. 13, 206-208 (1977).

Other

E. R. LaChapelle, Field Guide to Snow Crystals (University of Washington Press, 1969).

M. Kuhn, University of Innsbruck (personal communication, 1984).

P. J. Stephenson, "Some considerations of snow metamorphism in the Antarctic ice sheet in the light of ice crystal studies," in Physics of Snow and Ice, H.Oura, ed. (Bunyeido, 1967), pp. 725-740.

G. H. Liljequist, "Energy exchange of an Antarctic snow-field: short-wave radiation (Maudheim 71°01′S, 10°65′W)," Norwegian-British-Swedish Antarctic Expedition, 1949-1952: Scientific Results (Norsk Polarinstitutt, 1956), Vol. 2(1A).

S. Bourgeois, "Extinction of solar radiation within snow cover," M. S. thesis (Eidgenössische Technische Hochschule, Zürich, Switzerland, 2002).

E. Raschke and A. Ohmura, "Radiation budget of the climate system," in Observed Global Climate, M.Hantel, ed. (Springer, 2005), Chap. 4.

K. Woschnagg, "Optical properties of South Pole ice at depths from 140 to 2300 meters," in Proceedings of the 26th International Cosmic Ray Conference, B.L.Dingus, D.B.Kieda, and M.H.Salamon, eds. (American Institute of Physics, 2000), Vol. 2, pp. 200-203.

K. Woschnagg, Department of Physics, 366 LeConte Hall, University of California, Berkeley, Calif. 94720, and the AMANDA collaboration have submitted a manuscript called "Optical properties of deep glacial ice at the South Pole" to the Journal of Geophysical Research.

A. Minton, National Institutes of Health, Bethesda, Maryland (personal communication, 1985).

S. G. Warren and E. P. Shettle, "Optical constants of ice in the infrared atmospheric windows," in Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 103-106.

T. Bond, Department of Civil and Environmental Engineering, University of Illinois (personal communication, 2005).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

B. Light, Applied Physics Laboratory, University of Washington (personal communication, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Prior reported values of the spectral absorption coefficient of pure ice from Sauberer,[4] Grenfell and Perovich,[5] Perovich and Govoni,[6] and the AMANDA project.[7, 8, 9, 10, 11] The two sets of AMANDA values are for ice at different depths, as indicated. The values from Minton[12] plotted here are a factor of 2.3 higher than in Warren's review.[1] Minton's reported extinction coefficients were defined on base-10 (Refs. 13 and 14) but were misinterpreted in Warren's review[1] as extinction coefficients on base-e.[15]

Fig. 2
Fig. 2

Spectral albedo measurements for natural snow and ice surfaces. (a) Snow at the South Pole[2] and at Dome C, snow-covered sea ice at the coast of Antarctica,[18] and snow in Japan.[19] The curve through the South Pole measurements is the result of a radiative transfer model that used the laboratory measurements of k ice (Fig. 4 of Ref. 2). (b) Cold glacier ice at Mount Howe in the Transantarctic Mountains,[3, 20] bare cold thick sea ice at the coast of Antarctica,[21] blue marine ice of an iceberg,[22] and bare Arctic sea ice (from Fig. 2 of Ref. 24). Note that the vertical axis in (a) differs from that in (b).

Fig. 3
Fig. 3

Transmission of solar radiation flux into snow at selected wavelengths, relative to the flux measured at a reference depth of 40 cm [Eq. (2)], at Dome C, Antarctica, 5 January 2005, near local noon, 2 km west of the station and 200 m north of the walk-up tower. Linear fits are shown for two depth ranges: 40–90 cm (layer B) and 90–135 cm (layer C). Snow depths (top horizontal scale) have been converted to ice-equivalent depths (bottom scale) using the measured density profile, which varied in the range of 300–400 kg∕m3.

Fig. 4
Fig. 4

Flux extinction coefficients for snow at Dome C on 5 January 2005 for two layers. These values were obtained from the slopes in Fig. 3. The units of k ext are per meter of ice equivalent. (a) Linear scale. (b) Logarithmic scale. The measured data for layer C terminate at 550 nm; the point at 600 nm and the curve joining this point to the measured values involve a determination of the ratio of snow grain sizes for layers B and C, as explained in the text. The uncertainty in the slopes of linear fits in Fig. 3 is shown as the shaded band around each plot (1 standard deviation).

Fig. 5
Fig. 5

Spectral absorption coefficient of ice, inferred from the snow transmission measurements for layers B and C, before removing the absorption by impurities. The values for layer C are lower because layer C consists of snow that fell before establishment of the station in 1997, so it contains less soot than layer B. Accurate measurements for layer B were obtained in three holes on three different days. The average of the three holes is shown, along with maximum and minimum values at each wavelength. (This spread is similar to the uncertainty in the slopes in Fig. 3 for individual holes.) Values from the laboratory measurements and from two depths of the AMANDA experiment (filled and open symbols) are shown for comparison. The shaded region surrounding the curve for layer C is propagated from the shaded region of Fig. 4(b), representing the uncertainty in the slopes of the transmission plots of Fig. 3.

Fig. 6
Fig. 6

Soot content of snow at Dome C, as a function of depth, from the surface down to 105 cm. The corresponding approximate ages of snow are given on the right-hand scale. Snow was sampled on 18 January 2005, at the location where the measurements of transmission (Fig. 3) were made on 5 January.

Fig. 7
Fig. 7

Spectral absorption coefficient of ice on both (a) linear and (b) logarithmic scales, inferred from the snow transmission measurements after subtraction of the absorption by impurities (assumed to be soot). The upper (solid) curve in each frame results from attributing all the absorption to ice, and is identical to the lowest curve in Fig. 5. We propose this curve (with its uncertainties) as an upper bound to the true spectral absorption coefficient of pure ice. The lower (dashed) curve results from the analysis in Appendix AA, assuming that ice is nonabsorptive at λ = 390 nm, so that all the absorption at that wavelength is caused by impurities. It is a suggested lower bound to the spectral absorption coefficient of ice. The AMANDA results from the two depths shown here are the same as those in Fig. 5. The shaded region surrounding the upper-limit curve is propagated from the shaded region of Fig. 4(b), representing the uncertainty in the slopes of the transmission plots of Fig. 3.

Tables (2)

Tables Icon

Table 1 Dependences of Radiative Transfer Quantities within the Domains of 350–600 nm for Wavelength λ, 20–200 μm for Snow Grain Radius ri , and 0–100 ppb for Soot Concentration C

Tables Icon

Table 2 Upper Limit for Absorption Coefficient of Pure Ice, Obtained from Snow Transmission Measurements in Layer C a

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

σ ext = σ scat + σ abs .
t λ ( z 0 , z ) = I λ ( z ) I λ ( z 0 ) ,
t λ ( z 0 , z ) = exp [ ( z z 0 ) k ext ( λ ) ] .
Q ext = Q abs + Q scat .
ω ¯ σ scat σ ext = σ scat σ abs + σ scat .
ω ¯ = Q scat Q ext = Q scat Q abs + Q scat .
k ext = σ ext ( 1 ω ¯ ) ( 1 ω ¯ g ) .
σ ext ice = n i π r i 2 Q ext ice .
ρ snow = n i 4 3 π r i 3 ρ ice .
σ ext ice = 3 4 Q ext ice ρ snow r i ρ ice .
σ ext ice = 3 4 Q ext ice r i .
[ k ext ( λ 1 ) k ext ( λ 0 ) ] 2 ( 1 ω ¯ ) 1 ( 1 ω ¯ ) 0 .
Q abs 1 exp ( r i k ice ) r i k ice
( 1 ω ¯ ) r i k ice .
[ k ext ( λ ) k ext ( λ 0 ) ] 2 k ice ( λ ) k ice ( λ 0 ) ,
( k B k C ) 2 = σ B 2 ( 1 ω ¯ ) B σ C 2 ( 1 ω ¯ ) C .
( k B k C ) 2 = ( r C r B ) 2 r B r C = r C r B .
C = 4 3 π r s 3 ρ s n s 4 3 π r i 3 ρ i n i = 3 n s r s 2 4 n i r i 3 ρ i X m .
( 1 ω ¯ ) = σ abs soot + σ abs ice σ ext soot + σ ext ice .
( 1 ω ¯ ) = n s π r s 2 Q abs soot + n i π r i 2 Q abs ice n i π r i 2 Q ext ice .
( 1 ω ¯ ) 1 ( 1 ω ¯ ) 0 = n s r s 2 n i r i 2 Q abs soot ( λ 1 ) + Q abs ice ( λ 1 ) n s r s 2 n i r i 2 Q abs soot ( λ 0 ) + Q abs ice ( λ 0 ) .
( k 1 k 0 ) 2 = 4 3 r i ρ i X m C Q abs soot ( λ 1 ) + Q abs ice ( λ 1 ) f Q abs ice ( λ 0 ) ,
Q abs ice = ( 2.03 ) ( 0.88 ) k ice r i = 1.79 k ice r i .
1.79 f k ice ( λ 0 ) ( k 1 k 0 ) 2 = 4 3 ρ i X m C Q abs soot ( λ 1 ) + 1.79 k ice ( λ 1 ) .
a f ( k 1 k 0 ) 2 = C + b k ice ( λ 1 ) ,
k 0 B 2 k 0 C 2 = r C f B r B f C .
af B k 0 B 2 [ k 1 B 2 k 1 C 2 r C r B ] = C B C C .
af C [ k 1 C ( 390   nm ) k 0 C ( 390   nm ) ] 2 = C C .

Metrics