Abstract

We study the local-field enhancement in a nanocavity created by optical nanomanipulation. Recently we showed that a metallic probe can modify the optical force experienced by a metallic particle and generate a material selective trapping potential. We show that the same configuration used for optical forces can be used to control both in magnitude and tune the local-field enhancement around the particle at resonance. The spatial resolution and material selectivity of this technique, allied to its capability to manipulate particles at the nanometric level, may offer a new and versatile way to achieve surface-enhanced Raman scattering spectroscopy at the single-molecule level.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002).
    [CrossRef]
  2. G. P. Wiederrecht, "Near-field optical imaging of noble metal nanoparticles," Eur. Phys. J.: Appl. Phys. 28, 3-18 (2004).
    [CrossRef]
  3. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  4. M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
    [CrossRef]
  5. Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys. 89, 5774-5778 (2001).
    [CrossRef]
  6. J. T. Krug, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).
    [CrossRef]
  7. J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003).
    [CrossRef]
  8. R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett. 67, 3796-3799 (1991).
    [CrossRef] [PubMed]
  9. R. Berndt, J. K. Gimzewski, and P. Johansson, "Electromagnetic interactions of metallic objects in nanometer proximity," Phys. Rev. Lett. 71, 3493-3496 (1993).
    [CrossRef] [PubMed]
  10. R. G. Milner and D. Rochards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc. 202, 66-71 (2001).
    [CrossRef] [PubMed]
  11. F. Festy, A. Demming, and D. Richards, "Resonant excitation of tip plasmons for tip-enhanced Raman SNOM," Ultramicroscopy 100, 437-441 (2004).
    [CrossRef] [PubMed]
  12. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-123605 (2002).
    [CrossRef] [PubMed]
  13. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405 (2002).
    [CrossRef]
  14. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425 (2005).
    [CrossRef]
  15. E.D.Palik ed., Handbook of Optical Constants of Solids (Academic, 1985).
  16. P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, "Evanescent light scattering: The validity of the dipole approximation," Phys. Rev. B 58, 2310-2315 (1998).
    [CrossRef]
  17. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B. 61, 14119-14127 (2000).
    [CrossRef]
  18. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
    [CrossRef] [PubMed]
  19. H. Xu and M. Käll, "Surface-plasmon-enhanced forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
    [CrossRef] [PubMed]
  20. N. Calander and M. Willander, "Optical trapping of single molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603-143608 (2002).
    [CrossRef] [PubMed]
  21. J. M. Gérardy and M. Ausloos, "Absorbtion spectrum of clusters of spheres from the general solution of Maxwell's equation: II. Optical properties of aggregated metal spheres," Phys. Rev. B 30, 2167-2181 (1984).
    [CrossRef]
  22. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
    [CrossRef]
  23. R. W. Rendell and D. J. Scalapino, "Surface plasmons confined by microstructures on tunnel junctions," Phys. Rev. B 24, 3276-3294 (1981).
    [CrossRef]
  24. A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), p. 305.
  25. P. Johansson, "Light emission from a scanning tunneling microscope: fully retarded calculation," Phys. Rev. B 58, 10823-10834 (1998).
    [CrossRef]
  26. We have checked this dependence in the static case (because the system of two spheres is smaller than the wavelength of the illumination) by performing the computation in the bispherical coordinates. [P. C. Chaumet and J.-P. Dufour, "Electric potential and field between two different spheres," J. Electrost. 43, 145-149 (1998)].
  27. A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: single-molecule near-field probe," Phys. Rev. A 63, 023819 (2001).
    [CrossRef]
  28. T. Iida and H. Ishihara, "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition," Phys. Rev. Lett. 90, 057403 (2003).
    [CrossRef] [PubMed]

2005 (1)

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425 (2005).
[CrossRef]

2004 (2)

G. P. Wiederrecht, "Near-field optical imaging of noble metal nanoparticles," Eur. Phys. J.: Appl. Phys. 28, 3-18 (2004).
[CrossRef]

F. Festy, A. Demming, and D. Richards, "Resonant excitation of tip plasmons for tip-enhanced Raman SNOM," Ultramicroscopy 100, 437-441 (2004).
[CrossRef] [PubMed]

2003 (4)

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003).
[CrossRef]

T. Iida and H. Ishihara, "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition," Phys. Rev. Lett. 90, 057403 (2003).
[CrossRef] [PubMed]

2002 (6)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

J. T. Krug, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).
[CrossRef]

H. Xu and M. Käll, "Surface-plasmon-enhanced forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

N. Calander and M. Willander, "Optical trapping of single molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603-143608 (2002).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-123605 (2002).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405 (2002).
[CrossRef]

2001 (3)

R. G. Milner and D. Rochards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc. 202, 66-71 (2001).
[CrossRef] [PubMed]

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys. 89, 5774-5778 (2001).
[CrossRef]

A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: single-molecule near-field probe," Phys. Rev. A 63, 023819 (2001).
[CrossRef]

2000 (2)

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B. 61, 14119-14127 (2000).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

1998 (2)

P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, "Evanescent light scattering: The validity of the dipole approximation," Phys. Rev. B 58, 2310-2315 (1998).
[CrossRef]

P. Johansson, "Light emission from a scanning tunneling microscope: fully retarded calculation," Phys. Rev. B 58, 10823-10834 (1998).
[CrossRef]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

1993 (1)

R. Berndt, J. K. Gimzewski, and P. Johansson, "Electromagnetic interactions of metallic objects in nanometer proximity," Phys. Rev. Lett. 71, 3493-3496 (1993).
[CrossRef] [PubMed]

1991 (1)

R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett. 67, 3796-3799 (1991).
[CrossRef] [PubMed]

1984 (1)

J. M. Gérardy and M. Ausloos, "Absorbtion spectrum of clusters of spheres from the general solution of Maxwell's equation: II. Optical properties of aggregated metal spheres," Phys. Rev. B 30, 2167-2181 (1984).
[CrossRef]

1981 (1)

R. W. Rendell and D. J. Scalapino, "Surface plasmons confined by microstructures on tunnel junctions," Phys. Rev. B 24, 3276-3294 (1981).
[CrossRef]

Aizpurua, J.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Apell, S. P.

J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003).
[CrossRef]

Ausloos, M.

J. M. Gérardy and M. Ausloos, "Absorbtion spectrum of clusters of spheres from the general solution of Maxwell's equation: II. Optical properties of aggregated metal spheres," Phys. Rev. B 30, 2167-2181 (1984).
[CrossRef]

Berndt, R.

R. Berndt, J. K. Gimzewski, and P. Johansson, "Electromagnetic interactions of metallic objects in nanometer proximity," Phys. Rev. Lett. 71, 3493-3496 (1993).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett. 67, 3796-3799 (1991).
[CrossRef] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Boardman, A. D.

A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), p. 305.

Calander, N.

N. Calander and M. Willander, "Optical trapping of single molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603-143608 (2002).
[CrossRef] [PubMed]

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425 (2005).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-123605 (2002).
[CrossRef] [PubMed]

A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: single-molecule near-field probe," Phys. Rev. A 63, 023819 (2001).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B. 61, 14119-14127 (2000).
[CrossRef]

P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, "Evanescent light scattering: The validity of the dipole approximation," Phys. Rev. B 58, 2310-2315 (1998).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

de Fornel, F.

A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: single-molecule near-field probe," Phys. Rev. A 63, 023819 (2001).
[CrossRef]

P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, "Evanescent light scattering: The validity of the dipole approximation," Phys. Rev. B 58, 2310-2315 (1998).
[CrossRef]

Demming, A.

F. Festy, A. Demming, and D. Richards, "Resonant excitation of tip plasmons for tip-enhanced Raman SNOM," Ultramicroscopy 100, 437-441 (2004).
[CrossRef] [PubMed]

Dufour, J.-P.

P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, "Evanescent light scattering: The validity of the dipole approximation," Phys. Rev. B 58, 2310-2315 (1998).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Festy, F.

F. Festy, A. Demming, and D. Richards, "Resonant excitation of tip plasmons for tip-enhanced Raman SNOM," Ultramicroscopy 100, 437-441 (2004).
[CrossRef] [PubMed]

Gérardy, J. M.

J. M. Gérardy and M. Ausloos, "Absorbtion spectrum of clusters of spheres from the general solution of Maxwell's equation: II. Optical properties of aggregated metal spheres," Phys. Rev. B 30, 2167-2181 (1984).
[CrossRef]

Gimzewski, J. K.

R. Berndt, J. K. Gimzewski, and P. Johansson, "Electromagnetic interactions of metallic objects in nanometer proximity," Phys. Rev. Lett. 71, 3493-3496 (1993).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett. 67, 3796-3799 (1991).
[CrossRef] [PubMed]

Hamann, H. F.

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys. 89, 5774-5778 (2001).
[CrossRef]

Hartschuh, A.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Iida, T.

T. Iida and H. Ishihara, "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition," Phys. Rev. Lett. 90, 057403 (2003).
[CrossRef] [PubMed]

Ishihara, H.

T. Iida and H. Ishihara, "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition," Phys. Rev. Lett. 90, 057403 (2003).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Johansson, P.

J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003).
[CrossRef]

P. Johansson, "Light emission from a scanning tunneling microscope: fully retarded calculation," Phys. Rev. B 58, 10823-10834 (1998).
[CrossRef]

R. Berndt, J. K. Gimzewski, and P. Johansson, "Electromagnetic interactions of metallic objects in nanometer proximity," Phys. Rev. Lett. 71, 3493-3496 (1993).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett. 67, 3796-3799 (1991).
[CrossRef] [PubMed]

Käll, M.

H. Xu and M. Käll, "Surface-plasmon-enhanced forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Klymyshyn, N.

M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Krug, J. T.

J. T. Krug, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).
[CrossRef]

López-Ríos, T.

J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003).
[CrossRef]

Lu, H. P.

M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

Lushnikov, A. A.

A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), p. 305.

Maksimenko, V. V.

A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), p. 305.

Martin, Y. C.

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys. 89, 5774-5778 (2001).
[CrossRef]

Micic, M.

M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

Milner, R. G.

R. G. Milner and D. Rochards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc. 202, 66-71 (2001).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425 (2005).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-123605 (2002).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405 (2002).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B. 61, 14119-14127 (2000).
[CrossRef]

Novotny, L.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Porto, J. A.

J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003).
[CrossRef]

Rahmani, A.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425 (2005).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-123605 (2002).
[CrossRef] [PubMed]

A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: single-molecule near-field probe," Phys. Rev. A 63, 023819 (2001).
[CrossRef]

P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, "Evanescent light scattering: The validity of the dipole approximation," Phys. Rev. B 58, 2310-2315 (1998).
[CrossRef]

Rendell, R. W.

R. W. Rendell and D. J. Scalapino, "Surface plasmons confined by microstructures on tunnel junctions," Phys. Rev. B 24, 3276-3294 (1981).
[CrossRef]

Richards, D.

F. Festy, A. Demming, and D. Richards, "Resonant excitation of tip plasmons for tip-enhanced Raman SNOM," Ultramicroscopy 100, 437-441 (2004).
[CrossRef] [PubMed]

Rochards, D.

R. G. Milner and D. Rochards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc. 202, 66-71 (2001).
[CrossRef] [PubMed]

Sánchez, E. J.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

J. T. Krug, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).
[CrossRef]

Scalapino, D. J.

R. W. Rendell and D. J. Scalapino, "Surface plasmons confined by microstructures on tunnel junctions," Phys. Rev. B 24, 3276-3294 (1981).
[CrossRef]

Simonov, A. J.

A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), p. 305.

Suh, Y. D.

M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

Wickramasinghe, H. K.

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys. 89, 5774-5778 (2001).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, "Near-field optical imaging of noble metal nanoparticles," Eur. Phys. J.: Appl. Phys. 28, 3-18 (2004).
[CrossRef]

Willander, M.

N. Calander and M. Willander, "Optical trapping of single molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603-143608 (2002).
[CrossRef] [PubMed]

Xie, X. S.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

J. T. Krug, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Xu, H.

H. Xu and M. Käll, "Surface-plasmon-enhanced forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Eur. Phys. J.: Appl. Phys. (1)

G. P. Wiederrecht, "Near-field optical imaging of noble metal nanoparticles," Eur. Phys. J.: Appl. Phys. 28, 3-18 (2004).
[CrossRef]

J. Appl. Phys. (1)

Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys. 89, 5774-5778 (2001).
[CrossRef]

J. Chem. Phys. (1)

J. T. Krug, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).
[CrossRef]

J. Microsc. (1)

R. G. Milner and D. Rochards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc. 202, 66-71 (2001).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

J. Phys.: Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Phys. Rev. A (1)

A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: single-molecule near-field probe," Phys. Rev. A 63, 023819 (2001).
[CrossRef]

Phys. Rev. B (7)

P. Johansson, "Light emission from a scanning tunneling microscope: fully retarded calculation," Phys. Rev. B 58, 10823-10834 (1998).
[CrossRef]

J. M. Gérardy and M. Ausloos, "Absorbtion spectrum of clusters of spheres from the general solution of Maxwell's equation: II. Optical properties of aggregated metal spheres," Phys. Rev. B 30, 2167-2181 (1984).
[CrossRef]

R. W. Rendell and D. J. Scalapino, "Surface plasmons confined by microstructures on tunnel junctions," Phys. Rev. B 24, 3276-3294 (1981).
[CrossRef]

J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425 (2005).
[CrossRef]

P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, "Evanescent light scattering: The validity of the dipole approximation," Phys. Rev. B 58, 2310-2315 (1998).
[CrossRef]

Phys. Rev. B. (1)

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B. 61, 14119-14127 (2000).
[CrossRef]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Phys. Rev. Lett. (8)

T. Iida and H. Ishihara, "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition," Phys. Rev. Lett. 90, 057403 (2003).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-123605 (2002).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

H. Xu and M. Käll, "Surface-plasmon-enhanced forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

N. Calander and M. Willander, "Optical trapping of single molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603-143608 (2002).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett. 67, 3796-3799 (1991).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, "Electromagnetic interactions of metallic objects in nanometer proximity," Phys. Rev. Lett. 71, 3493-3496 (1993).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Ultramicroscopy (1)

F. Festy, A. Demming, and D. Richards, "Resonant excitation of tip plasmons for tip-enhanced Raman SNOM," Ultramicroscopy 100, 437-441 (2004).
[CrossRef] [PubMed]

Other (3)

E.D.Palik ed., Handbook of Optical Constants of Solids (Academic, 1985).

We have checked this dependence in the static case (because the system of two spheres is smaller than the wavelength of the illumination) by performing the computation in the bispherical coordinates. [P. C. Chaumet and J.-P. Dufour, "Electric potential and field between two different spheres," J. Electrost. 43, 145-149 (1998)].

A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), p. 305.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

z component of the optical force experienced by a sphere of radius a = 10 nm versus the wavelength of illumination. The tungsten tip is in contact with the sphere. Solid curve, gold sphere; dashed curve, copper sphere; triangle, silver sphere. The arrows indicate the plasmon resonance wavelengths of an isolated sphere.

Fig. 2
Fig. 2

SERS electromagnetic enhancement factor (M) versus the wavelength of illumination for a molecule located 2 nm from the sphere, for different distances d between the tungsten tip and the sphere: d = ∞ (solid curves), d = 30 nm (crosses), d = 8 nm (circles), and d = 4 nm (diamonds). Dashed curves pertain to cases in which the tip is of the same material as the sphere and d = 4 nm. Dotted curves pertain to cases in which the tip is in tungsten, with a second sphere (same material as the first one) trapped at its apex. Distance between the two spheres d = 4 nm. The radius of the spheres is 10 nm. (a) Silver sphere, (b) gold sphere, (c) copper sphere.

Fig. 3
Fig. 3

Lifetime normalized to free space for dipoles parallel (solid curve) and perpendicular (dashed curve) to the wall of a plane junction used to model the tip–sphere cavity for (a) silver, (b) gold, and (c) copper. Distance between the tip in tungsten and the sphere d = 4 nm (solid curves without symbol) and d = 30 nm (curves with circles).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω = ω 1 ω 2 π ω 1 2 + ω 2 2 [ ( R 1 + R 2 ) d 8 R 1 R 2 ] 1 / 4 .

Metrics