Abstract

A two-wave mixing (TWM) interferometer using photorefractive (PRC) InP:Fe crystal is configured to demodulate the spectral shift of a fiber Bragg grating (FBG) sensor. The FBG is illuminated with a broadband source, and any strain in the FBG is encoded as a wavelength shift of the light reflected by the FBG. The wavelength shift is converted into phase shift by means of an unbalanced TWM interferometer. TWM wavelength demodulation is attractive for monitoring dynamic strains because it is adaptive and multiplexable. Adaptivity implies that it can selectively monitor dynamic strains without active compensation of large quasi-static strains and large temperature drifts that otherwise would cause system to drift. Multiplexability implies that several FBG sensors can be simultaneously demodulated using a single demodulator. TWM wavelength demodulation is therefore a cost-effective method of demodulating several spectrally encoded FBG sensors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Sun and F. Ansari, "Design of the fiber optic distributed acoustic sensor based on Michelson interferometer and its location application," Opt. Eng. 42, 2987-2993 (2003).
    [CrossRef]
  2. J. Kiddy, C. Baldwin, T. Salter, and T. Chen, "Structural load monitoring of RV Triton using fiber optic sensors," in Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, A.-M.R.McGowan, ed., Proc. SPIE 4698,462-472 (2002).
  3. R. O. Claus, Fiber Optic Sensor Based Smart Materials and Structures (Institute of Physics Publishing, 1992).
  4. F. Ansari, Fiber Optic Sensors for Construction Materials and Bridges (Technomic Publishing Co., 1998).
  5. B. Culshaw and J. Dakin, Optical Fiber Sensors: Applications, Analysis, and Future Trends (Artech House Books, 1996).
  6. E. Udd, Fiber Optic Smart Structures (Wiley, 1995).
  7. L. S. Grattan and B. T. Meggitt, Optical Fiber Sensing Technology (Chapman, 1995).
  8. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 1991).
  9. R. O. Claus and C. D. Thompson, "Optical fiber-based ultrasonic wave generation and detection in materials," in Review of Progress in Quantitative Nondestructive Evaluation (Plenum, 1991), Vol. 10B, pp. 360-369.
  10. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
    [CrossRef] [PubMed]
  11. M. Xu, G. H. Geiger, and J. P. Dakin, "Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter," J. Lightwave Technol. 14, 391-396 (1993).
  12. G. A. Ball, W. W. Morey, and P. K. Cheo "Fiber laser source/analyzer for Bragg-grating sensor array interrogation," J. Lightwave Technol. 12, 700-703 (1994).
    [CrossRef]
  13. P. Fomitchov and S. Krishnaswamy, "Response of a fiber Bragg-grating ultrasound sensor," Opt. Eng. 42, 956-963 (2003).
    [CrossRef]
  14. I. Perez, H. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,209-215 (2001).
  15. M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength encoded signals from Bragg-grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
    [CrossRef]
  16. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High resolution fiber-grating based strain sensor with interferometric wavelength shift detection," Electron. Lett. 28, 236-238 (1992).
    [CrossRef]
  17. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, 1996).
  18. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).
  19. R. K. Ing and J. P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
    [CrossRef]
  20. B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782-3784 (1996).
    [CrossRef]
  21. P. Delaye, A. Blouin, D. Drolet, L. A. Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
    [CrossRef]
  22. A. Blouin, D. Levesque, C. Neron, D. Drolet, and J. P. Monchalin, "Improved resolution and signal-to-noise ratio in laser-ultrasonics by SAFT processing," Opt. Exp. 2, 531-539 (1998).
    [CrossRef]
  23. H. Tuovinen and S. Krishnaswamy, "Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces," Appl. Phys. Lett. 73, 2236-2238 (1998).
    [CrossRef]
  24. U. Gubler, D. Wright, W. E. Moerner, and M. B. Klein, "Photochromic polymers for the optical homodyne detection of ultrasonic surface displacements," Opt. Lett. 27, 354-356 (2002).
    [CrossRef]
  25. D. D. Nolte, Photorefractive Effects and Materials (Kluwer Academic Publishers, 1995).
  26. T. W. Murray, H. Tuovinen, and S. Krishnaswamy, "Adaptive optical array receivers for detection of surface acoustic waves," Appl. Opt. 39, 3276-3284 (2000).
    [CrossRef]
  27. T. W. Murray and S. Krishnaswamy, "Multiplexed interferometer for ultrasonic imaging applications," Opt. Eng. 40, 1321-1328 (2001).
    [CrossRef]
  28. P. F. Fomitchov, T. W. Murray, and S. Krishnaswamy, "Intrinsic fiber-optic sensor array using multiplexed two-wave mixing interferometry," Appl. Opt. 41, 1262-1266 (2002).
    [CrossRef] [PubMed]
  29. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  30. G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).
  31. A. A. Kamshilin and V. V. Prokofiev, "Fast adaptive interferometer with a photorefractive GaP crystal," Opt. Lett. 27, 1711-1723 (2002).
    [CrossRef]
  32. T. Kume, K. Nonaka, M. Yamamoto, and S. Yagi, "Wavelength-multiplexed holographic data storage by use of reflection geometry with a cerium-doped strontium barium niobate single-crystal structure and a tunable laser diode," Appl. Opt. 37, 334-339 (1998).
    [CrossRef]

2003 (2)

P. Fomitchov and S. Krishnaswamy, "Response of a fiber Bragg-grating ultrasound sensor," Opt. Eng. 42, 956-963 (2003).
[CrossRef]

C. S. Sun and F. Ansari, "Design of the fiber optic distributed acoustic sensor based on Michelson interferometer and its location application," Opt. Eng. 42, 2987-2993 (2003).
[CrossRef]

2002 (3)

2001 (1)

T. W. Murray and S. Krishnaswamy, "Multiplexed interferometer for ultrasonic imaging applications," Opt. Eng. 40, 1321-1328 (2001).
[CrossRef]

2000 (1)

1998 (3)

T. Kume, K. Nonaka, M. Yamamoto, and S. Yagi, "Wavelength-multiplexed holographic data storage by use of reflection geometry with a cerium-doped strontium barium niobate single-crystal structure and a tunable laser diode," Appl. Opt. 37, 334-339 (1998).
[CrossRef]

A. Blouin, D. Levesque, C. Neron, D. Drolet, and J. P. Monchalin, "Improved resolution and signal-to-noise ratio in laser-ultrasonics by SAFT processing," Opt. Exp. 2, 531-539 (1998).
[CrossRef]

H. Tuovinen and S. Krishnaswamy, "Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces," Appl. Phys. Lett. 73, 2236-2238 (1998).
[CrossRef]

1997 (1)

1996 (1)

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782-3784 (1996).
[CrossRef]

1995 (1)

M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength encoded signals from Bragg-grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
[CrossRef]

1994 (1)

G. A. Ball, W. W. Morey, and P. K. Cheo "Fiber laser source/analyzer for Bragg-grating sensor array interrogation," J. Lightwave Technol. 12, 700-703 (1994).
[CrossRef]

1993 (2)

M. Xu, G. H. Geiger, and J. P. Dakin, "Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter," J. Lightwave Technol. 14, 391-396 (1993).

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

1992 (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High resolution fiber-grating based strain sensor with interferometric wavelength shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

1991 (1)

R. K. Ing and J. P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Ansari, F.

C. S. Sun and F. Ansari, "Design of the fiber optic distributed acoustic sensor based on Michelson interferometer and its location application," Opt. Eng. 42, 2987-2993 (2003).
[CrossRef]

F. Ansari, Fiber Optic Sensors for Construction Materials and Bridges (Technomic Publishing Co., 1998).

Baldwin, C.

J. Kiddy, C. Baldwin, T. Salter, and T. Chen, "Structural load monitoring of RV Triton using fiber optic sensors," in Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, A.-M.R.McGowan, ed., Proc. SPIE 4698,462-472 (2002).

Ball, G. A.

G. A. Ball, W. W. Morey, and P. K. Cheo "Fiber laser source/analyzer for Bragg-grating sensor array interrogation," J. Lightwave Technol. 12, 700-703 (1994).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High resolution fiber-grating based strain sensor with interferometric wavelength shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Blouin, A.

A. Blouin, D. Levesque, C. Neron, D. Drolet, and J. P. Monchalin, "Improved resolution and signal-to-noise ratio in laser-ultrasonics by SAFT processing," Opt. Exp. 2, 531-539 (1998).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L. A. Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

Breglio, G.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Calabro, A.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Chen, T.

J. Kiddy, C. Baldwin, T. Salter, and T. Chen, "Structural load monitoring of RV Triton using fiber optic sensors," in Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, A.-M.R.McGowan, ed., Proc. SPIE 4698,462-472 (2002).

Cheo, P. K.

G. A. Ball, W. W. Morey, and P. K. Cheo "Fiber laser source/analyzer for Bragg-grating sensor array interrogation," J. Lightwave Technol. 12, 700-703 (1994).
[CrossRef]

Claus, R. O.

R. O. Claus, Fiber Optic Sensor Based Smart Materials and Structures (Institute of Physics Publishing, 1992).

R. O. Claus and C. D. Thompson, "Optical fiber-based ultrasonic wave generation and detection in materials," in Review of Progress in Quantitative Nondestructive Evaluation (Plenum, 1991), Vol. 10B, pp. 360-369.

Coppola, G.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Cui, H.

I. Perez, H. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,209-215 (2001).

Culshaw, B.

B. Culshaw and J. Dakin, Optical Fiber Sensors: Applications, Analysis, and Future Trends (Artech House Books, 1996).

Cusano, A.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Cutolo, A.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Dakin, J.

B. Culshaw and J. Dakin, Optical Fiber Sensors: Applications, Analysis, and Future Trends (Artech House Books, 1996).

Dakin, J. P.

M. Xu, G. H. Geiger, and J. P. Dakin, "Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter," J. Lightwave Technol. 14, 391-396 (1993).

Davis, M. A.

M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength encoded signals from Bragg-grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
[CrossRef]

Delaye, P.

Drolet, D.

A. Blouin, D. Levesque, C. Neron, D. Drolet, and J. P. Monchalin, "Improved resolution and signal-to-noise ratio in laser-ultrasonics by SAFT processing," Opt. Exp. 2, 531-539 (1998).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L. A. Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

Fomitchov, P.

P. Fomitchov and S. Krishnaswamy, "Response of a fiber Bragg-grating ultrasound sensor," Opt. Eng. 42, 956-963 (2003).
[CrossRef]

Fomitchov, P. F.

Geiger, G. H.

M. Xu, G. H. Geiger, and J. P. Dakin, "Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter," J. Lightwave Technol. 14, 391-396 (1993).

Giordano, M.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Grattan, L. S.

L. S. Grattan and B. T. Meggitt, Optical Fiber Sensing Technology (Chapman, 1995).

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, 1996).

Gubler, U.

Ing, R. K.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782-3784 (1996).
[CrossRef]

R. K. Ing and J. P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Kamshilin, A. A.

Kersey, A. D.

M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength encoded signals from Bragg-grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High resolution fiber-grating based strain sensor with interferometric wavelength shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Khomenko, A. V.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).

Kiddy, J.

J. Kiddy, C. Baldwin, T. Salter, and T. Chen, "Structural load monitoring of RV Triton using fiber optic sensors," in Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, A.-M.R.McGowan, ed., Proc. SPIE 4698,462-472 (2002).

Klein, M. B.

Krishnaswamy, S.

P. Fomitchov and S. Krishnaswamy, "Response of a fiber Bragg-grating ultrasound sensor," Opt. Eng. 42, 956-963 (2003).
[CrossRef]

P. F. Fomitchov, T. W. Murray, and S. Krishnaswamy, "Intrinsic fiber-optic sensor array using multiplexed two-wave mixing interferometry," Appl. Opt. 41, 1262-1266 (2002).
[CrossRef] [PubMed]

T. W. Murray and S. Krishnaswamy, "Multiplexed interferometer for ultrasonic imaging applications," Opt. Eng. 40, 1321-1328 (2001).
[CrossRef]

T. W. Murray, H. Tuovinen, and S. Krishnaswamy, "Adaptive optical array receivers for detection of surface acoustic waves," Appl. Opt. 39, 3276-3284 (2000).
[CrossRef]

H. Tuovinen and S. Krishnaswamy, "Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces," Appl. Phys. Lett. 73, 2236-2238 (1998).
[CrossRef]

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782-3784 (1996).
[CrossRef]

Kume, T.

Levesque, D.

A. Blouin, D. Levesque, C. Neron, D. Drolet, and J. P. Monchalin, "Improved resolution and signal-to-noise ratio in laser-ultrasonics by SAFT processing," Opt. Exp. 2, 531-539 (1998).
[CrossRef]

Meggitt, B. T.

L. S. Grattan and B. T. Meggitt, Optical Fiber Sensing Technology (Chapman, 1995).

Minardo, A.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Moerner, W. E.

Monchalin, J. P.

A. Blouin, D. Levesque, C. Neron, D. Drolet, and J. P. Monchalin, "Improved resolution and signal-to-noise ratio in laser-ultrasonics by SAFT processing," Opt. Exp. 2, 531-539 (1998).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L. A. Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

R. K. Ing and J. P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Montmorillon, L. A.

Morey, W. W.

G. A. Ball, W. W. Morey, and P. K. Cheo "Fiber laser source/analyzer for Bragg-grating sensor array interrogation," J. Lightwave Technol. 12, 700-703 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High resolution fiber-grating based strain sensor with interferometric wavelength shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Murray, T. W.

Neron, C.

A. Blouin, D. Levesque, C. Neron, D. Drolet, and J. P. Monchalin, "Improved resolution and signal-to-noise ratio in laser-ultrasonics by SAFT processing," Opt. Exp. 2, 531-539 (1998).
[CrossRef]

Nicolais, L.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Nolte, D. D.

D. D. Nolte, Photorefractive Effects and Materials (Kluwer Academic Publishers, 1995).

Nonaka, K.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Perez, I.

I. Perez, H. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,209-215 (2001).

Petrov, M. P.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).

Pouet, B. F.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782-3784 (1996).
[CrossRef]

Prokofiev, V. V.

Roosen, G.

Royer, D.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782-3784 (1996).
[CrossRef]

Salter, T.

J. Kiddy, C. Baldwin, T. Salter, and T. Chen, "Structural load monitoring of RV Triton using fiber optic sensors," in Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, A.-M.R.McGowan, ed., Proc. SPIE 4698,462-472 (2002).

Solymar, L.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, 1996).

Stepanov, S. I.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).

Sun, C. S.

C. S. Sun and F. Ansari, "Design of the fiber optic distributed acoustic sensor based on Michelson interferometer and its location application," Opt. Eng. 42, 2987-2993 (2003).
[CrossRef]

Thompson, C. D.

R. O. Claus and C. D. Thompson, "Optical fiber-based ultrasonic wave generation and detection in materials," in Review of Progress in Quantitative Nondestructive Evaluation (Plenum, 1991), Vol. 10B, pp. 360-369.

Tuovinen, H.

T. W. Murray, H. Tuovinen, and S. Krishnaswamy, "Adaptive optical array receivers for detection of surface acoustic waves," Appl. Opt. 39, 3276-3284 (2000).
[CrossRef]

H. Tuovinen and S. Krishnaswamy, "Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces," Appl. Phys. Lett. 73, 2236-2238 (1998).
[CrossRef]

Udd, E.

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 1991).

E. Udd, Fiber Optic Smart Structures (Wiley, 1995).

I. Perez, H. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,209-215 (2001).

Webb, D. J.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, 1996).

Wright, D.

Xu, M.

M. Xu, G. H. Geiger, and J. P. Dakin, "Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter," J. Lightwave Technol. 14, 391-396 (1993).

Yagi, S.

Yamamoto, M.

Zeni, G.

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

Appl. Opt. (3)

Appl. Phys. Lett. (3)

H. Tuovinen and S. Krishnaswamy, "Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces," Appl. Phys. Lett. 73, 2236-2238 (1998).
[CrossRef]

R. K. Ing and J. P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782-3784 (1996).
[CrossRef]

Electron. Lett. (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High resolution fiber-grating based strain sensor with interferometric wavelength shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

J. Lightwave Technol. (3)

M. Xu, G. H. Geiger, and J. P. Dakin, "Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter," J. Lightwave Technol. 14, 391-396 (1993).

G. A. Ball, W. W. Morey, and P. K. Cheo "Fiber laser source/analyzer for Bragg-grating sensor array interrogation," J. Lightwave Technol. 12, 700-703 (1994).
[CrossRef]

M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength encoded signals from Bragg-grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (3)

T. W. Murray and S. Krishnaswamy, "Multiplexed interferometer for ultrasonic imaging applications," Opt. Eng. 40, 1321-1328 (2001).
[CrossRef]

P. Fomitchov and S. Krishnaswamy, "Response of a fiber Bragg-grating ultrasound sensor," Opt. Eng. 42, 956-963 (2003).
[CrossRef]

C. S. Sun and F. Ansari, "Design of the fiber optic distributed acoustic sensor based on Michelson interferometer and its location application," Opt. Eng. 42, 2987-2993 (2003).
[CrossRef]

Opt. Exp. (1)

A. Blouin, D. Levesque, C. Neron, D. Drolet, and J. P. Monchalin, "Improved resolution and signal-to-noise ratio in laser-ultrasonics by SAFT processing," Opt. Exp. 2, 531-539 (1998).
[CrossRef]

Opt. Lett. (3)

Other (14)

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

G. Coppola, A. Minardo, A. Cusano, G. Breglio, G. Zeni, A. Cutolo, A. Calabro, M. Giordano, and L. Nicolais, "Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,224-232 (2001).

D. D. Nolte, Photorefractive Effects and Materials (Kluwer Academic Publishers, 1995).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, 1996).

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).

I. Perez, H. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Smart Structures and Materials, E.Udd and D.Inaudi, eds., Proc. SPIE 4328,209-215 (2001).

J. Kiddy, C. Baldwin, T. Salter, and T. Chen, "Structural load monitoring of RV Triton using fiber optic sensors," in Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, A.-M.R.McGowan, ed., Proc. SPIE 4698,462-472 (2002).

R. O. Claus, Fiber Optic Sensor Based Smart Materials and Structures (Institute of Physics Publishing, 1992).

F. Ansari, Fiber Optic Sensors for Construction Materials and Bridges (Technomic Publishing Co., 1998).

B. Culshaw and J. Dakin, Optical Fiber Sensors: Applications, Analysis, and Future Trends (Artech House Books, 1996).

E. Udd, Fiber Optic Smart Structures (Wiley, 1995).

L. S. Grattan and B. T. Meggitt, Optical Fiber Sensing Technology (Chapman, 1995).

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 1991).

R. O. Claus and C. D. Thompson, "Optical fiber-based ultrasonic wave generation and detection in materials," in Review of Progress in Quantitative Nondestructive Evaluation (Plenum, 1991), Vol. 10B, pp. 360-369.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the TWM direct detection setup.

Fig. 2
Fig. 2

(Color online) Wavelength demodulated signal amplitude as a function of the OPD for different linewidth FBG sensors.

Fig. 3
Fig. 3

Experimental configuration of the FBG sensor and the TWM wavelength demodulator.

Fig. 4
Fig. 4

(Color online) Wavelength demodulated signal at different values of OPD. An intermittent dc field is applied to the PRC starting from 1 to 6 ms, and a 10 kHz 10 με strain is applied to the FBG from 2 to 6 ms.

Fig. 5
Fig. 5

(Color online) Plot of wavelength demodulated signal amplitude and TWM gain versus OPD.

Fig. 6
Fig. 6

(Color online) TWM demodulator output as a function of dynamic strain amplitude.

Fig. 7
Fig. 7

TWM wavelength demodulator response to a frequency sweep signal from 10 Hz to 1.2 kHz.

Fig. 8
Fig. 8

(a) Fourier spectrum of the applied frequency sweep signal from 10 Hz to 1.2 kHz. (b) Fourier spectrum of the response of the TWM wavelength demodulator. (c) Transfer function of the TWM wavelength demodulator. The cutoff frequency is seen to be around 600 Hz for this configuration.

Fig. 9
Fig. 9

A 580 kHz 3 με strain signal demodulated by the TWM wavelength demodulator.

Fig. 10
Fig. 10

Reflection spectra of the FBG sensor subject to 10 °C temperature drift. The center wavelength is shifted by 110 pm due to the temperature drift.

Fig. 11
Fig. 11

(Color online) Time trace of the demodulator amplitude shows no variation due to the 0.1 Hz 10°C temperature cycling. The dashed curve is what the demodulator amplitude would look like if the PRC did not adapt to the 2.3 rad phase shift caused by the temperature drift. Also shown is the thermistor resistance, which is a direct measure of the temperature change in the FBG.

Fig. 12
Fig. 12

(Color online) Time trace of the impact signal induced by dropping a ball bearing on a metal plate. The inset shows the experimental configuration of the impact event.

Fig. 13
Fig. 13

(Color online) Experimental configuration of the four-channel TWM wavelength demodulator.

Fig. 14
Fig. 14

Simultaneous demodulation of the signals from four FBG sensors using a 4-channel TWM wavelength demodulator. FBG sensor 1 (1548 nm) is excited with 10 kHz 5 με strain, sensor 2 (1552 nm) 5 kHz 5 με strain, sensor 3 (1556 nm) 2 kHz 5 με strain, and sensor 4 (1560 nm) 20 kHz 5 με strain.

Fig. 15
Fig. 15

(Color online) Fourier spectrum of the four-channel TWM wavelength demodulated signal shown in Fig. 14. There is no detected cross talk between these four channels.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E S = E 0 exp [ i ϕ ( t ) ] .
E dp = E 0 { exp [ γ L ] 1 } .
I = | E 0 | 2 { e 2 γ L + 2 sin ( γ L ) e γ L ϕ ( t ) } .
Δ λ B λ B = { 1 n eff 2 2 [ p 12 ν ( p 11 + p 12 ) ] } ε z + ( α Λ + α N ) Δ T .
ϕ ( t ) = 2 π d λ B       2 Δ λ B .
V = 2 r r + 1 exp { Δ k 2 d 2 16 ln 2 } .
S exp ( γ L ) sin ( γ L ) exp { Δ k 2 d 2 16 ln 2 } d Δ λ B λ B       2 .
S exp { Δ k 2 d 2 16 ln 2 } d Δ λ B λ B       2 .
Δ Λ = Δ λ c 2 sin ( θ / 2 ) .

Metrics