Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Subnanosecond-resolution phase-resolved fluorescence imaging technique for biomedical applications

Not Accessible

Your library or personal account may give you access

Abstract

Characterization of fluorescence emissions from cells often leads to conclusive results in the early detection of cellular abnormalities. Cellular abnormalities can be characterized by their difference in the fluorescence lifetime, which may be less than nanoseconds. A sensitive frequency domain technique, also called a phase-resolved fluorescence imaging technique, is proposed in which fluorescence emissions at the same wavelengths can more effectively be separated with subnanosecond resolution in their lifetime difference. The system configuration is optimized by incorporating even-step phase shifting in the homodyne-assisted signal-processing concept along with the phase-resolved fluorescence technique to eliminate the dc offsets of emission. Experiments are carried out with simulated samples composed of two fluorescence emissions of the same wavelength but with different lifetime values. Suppression of either of the fluorescence emissions by selective imaging of the other validates the superiority of the proposed technique. Hence, this technique can potentially be applied in the early detection of cellular abnormalities.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Formulation and implementation of a phase-resolved fluorescence technique for latent-fingerprint imaging: theoretical and experimental analysis

U. S. Dinish, Z. X. Chao, L. K. Seah, A. Singh, and V. M. Murukeshan
Appl. Opt. 44(3) 297-304 (2005)

Fluorescence lifetime imaging with picosecond resolution for biomedical applications

K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, and A. K. L. Dymoke-Bradshaw
Opt. Lett. 23(10) 810-812 (1998)

Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models

Dhruv Sud, Wei Zhong, David G. Beer, and Mary-Ann Mycek
Opt. Express 14(10) 4412-4426 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved