Abstract

Characterization of fluorescence emissions from cells often leads to conclusive results in the early detection of cellular abnormalities. Cellular abnormalities can be characterized by their difference in the fluorescence lifetime, which may be less than nanoseconds. A sensitive frequency domain technique, also called a phase-resolved fluorescence imaging technique, is proposed in which fluorescence emissions at the same wavelengths can more effectively be separated with subnanosecond resolution in their lifetime difference. The system configuration is optimized by incorporating even-step phase shifting in the homodyne-assisted signal-processing concept along with the phase-resolved fluorescence technique to eliminate the dc offsets of emission. Experiments are carried out with simulated samples composed of two fluorescence emissions of the same wavelength but with different lifetime values. Suppression of either of the fluorescence emissions by selective imaging of the other validates the superiority of the proposed technique. Hence, this technique can potentially be applied in the early detection of cellular abnormalities.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Formulation and implementation of a phase-resolved fluorescence technique for latent-fingerprint imaging: theoretical and experimental analysis

U. S. Dinish, Z. X. Chao, L. K. Seah, A. Singh, and V. M. Murukeshan
Appl. Opt. 44(3) 297-304 (2005)

Frequency-domain fluorescence lifetime optrode system design and instrumentation without a concurrent reference light-emitting diode

Mohammad Rameez Chatni, Gang Li, and David Marshall Porterfield
Appl. Opt. 48(29) 5528-5536 (2009)

ϕ2FLIM: a technique for alias-free frequency domain fluorescence lifetime imaging

Alan D. Elder, Clemens F. Kaminski, and Jonathan H. Frank
Opt. Express 17(25) 23181-23203 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription