Abstract

A pulsed quantum-cascade distributed-feedback laser, temperature tunable from 41°C to +31.6°C, and a resonant differential photoacoustic detector are used to measure trace-gas concentrations to as low as 66 parts per 109 by volume (ppbv) ammonia at a low laser power of 2  mW. Good agreement between the experimental spectrum and the simulated HITRAN spectrum of NH3 is found in the spectral range between 1046 and 1052  cm1. A detection limit of 30  ppbv ammonia at a signal-to-noise ratio of 1 was obtained with the quantum-cascade laser (QCL) photoacoustic (PA) setup. Concentration changes of 50  ppbv were detectable with this compact and versatile QCL-based PA detection system. The performance of the PA detector, characterized by the product of the incident laser power and the minimum detectable absorption coefficient, was 4.7×109  W  cm1.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
    [CrossRef]
  2. I. Linnerud, P. Kaspersen, and T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
    [CrossRef]
  3. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
    [CrossRef]
  4. R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001).
    [CrossRef]
  5. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, "Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases," Appl. Opt. 40, 4395-4403 (2001).
    [CrossRef]
  6. R. F. Curl and F. K. Tittel, "Tunable infrared laser spectroscopy," Annu. Rep. Prog. Chem. Sect. C 98, 217-270 (2002).
    [CrossRef]
  7. Z. Bozoki, A. Mohacsi, G. Szabo, Z. Bor, M. Erdelyi, W. Chen, and F. Tittel, "Near infrared diode based spectroscopic detection of ammonia:a comparative study of photoacoustic and direct optical absorption methods," Appl. Spectrosc. 56, 715-719 (2002).
    [CrossRef] [PubMed]
  8. A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004).
    [CrossRef] [PubMed]
  9. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
    [CrossRef]
  10. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Photoacoustic spectroscopy using quantum-cascade lasers," Opt. Lett. 24, 178-180 (1999).
    [CrossRef]
  11. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001).
    [CrossRef]
  12. D. Hofstetter, M. Beck, J. Faist, M. Nagele, and M. W. Sigrist, "Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers," Opt. Lett. 26, 887-889 (2001).
    [CrossRef]
  13. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Quantum-cascade laser measurements of stratospheric methane and nitrous oxide," Appl. Opt. 40, 321-326 (2001).
    [CrossRef]
  14. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser," Appl. Opt. 41, 573-578 (2002).
    [CrossRef] [PubMed]
  15. A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
    [CrossRef]
  16. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-IR-quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
    [CrossRef]
  17. S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, "Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser," Spectrochim. Acta Part A 58, 2533-2539 (2002).
    [CrossRef]
  18. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, "Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide," Appl. Opt. 41, 1169-1173 (2002).
    [CrossRef] [PubMed]
  19. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002).
    [CrossRef]
  20. T. Beyer, M. Braun, and A. Lambrecht, "Fast gas spectroscopy using pulsed quantum cascade lasers," J. Appl. Phys. 93, 3158-3160 (2003).
    [CrossRef]
  21. M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, "Photoacoustic detection of ozone using quantum cascade laser," Appl. Phys. B 78, 1513-1516 (2004).
    [CrossRef]
  22. http://europa.eu.int/comm/agriculture/envir/report/en/acid_en/ report.htm.
  23. J. Kaiser, "The other global pollutant: nitrogen proves tough to curb," Science 294, 1268-1296 (2001).
    [CrossRef] [PubMed]
  24. http://www.inchem.org/documents/ehc/ehc/ehc54.htm.
  25. Official site of Canada's National Occupational Health and Safety Resource:http://www.ccohs.ca/oshanswers/chemicals/chem_profiles/ammonia/health_ammonia.html, 28 September 2005.
  26. R. A. Rooth, A. J. L. Verhage, and L. W. Wouters, "Photoacoustic measurement of ammonia in the atmosphere:influence of water vapor and carbon dioxide," Appl. Opt. 29, 3643-3653 (1990).
    [CrossRef] [PubMed]
  27. A. Schmohl, A. Miklós, and P. Hess, "Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia," Appl. Opt. 40, 2571-2578 (2001).
    [CrossRef]
  28. A. Schmohl, A. Miklós, and P. Hess, "Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers," Appl. Opt. 41, 1815-1823 (2002).
    [CrossRef] [PubMed]
  29. White Martins (see http://www.praxair.com).
  30. http://www.hitran.com.
  31. A. Miklós, P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001).
    [CrossRef]
  32. M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002).
    [CrossRef]
  33. M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, "Ultrasensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003).
    [CrossRef]
  34. S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004).
    [CrossRef]
  35. R. Claps, F. V. Englich, D. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001).
    [CrossRef]
  36. M. E. Webber, D. S. Baer, and R. Hanson, "Ammonia monitoring near 1.5 μm with diode-laser absorption sensors," Appl. Opt. 40, 2031-2042 (2001).
    [CrossRef]
  37. A. A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004).
    [CrossRef] [PubMed]
  38. M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
    [CrossRef]

2005 (1)

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

2004 (4)

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004).
[CrossRef]

A. A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004).
[CrossRef] [PubMed]

A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004).
[CrossRef] [PubMed]

M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, "Photoacoustic detection of ozone using quantum cascade laser," Appl. Phys. B 78, 1513-1516 (2004).
[CrossRef]

2003 (2)

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, "Ultrasensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003).
[CrossRef]

T. Beyer, M. Braun, and A. Lambrecht, "Fast gas spectroscopy using pulsed quantum cascade lasers," J. Appl. Phys. 93, 3158-3160 (2003).
[CrossRef]

2002 (11)

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser," Appl. Opt. 41, 573-578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, "Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide," Appl. Opt. 41, 1169-1173 (2002).
[CrossRef] [PubMed]

A. Schmohl, A. Miklós, and P. Hess, "Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers," Appl. Opt. 41, 1815-1823 (2002).
[CrossRef] [PubMed]

Z. Bozoki, A. Mohacsi, G. Szabo, Z. Bor, M. Erdelyi, W. Chen, and F. Tittel, "Near infrared diode based spectroscopic detection of ammonia:a comparative study of photoacoustic and direct optical absorption methods," Appl. Spectrosc. 56, 715-719 (2002).
[CrossRef] [PubMed]

R. F. Curl and F. K. Tittel, "Tunable infrared laser spectroscopy," Annu. Rep. Prog. Chem. Sect. C 98, 217-270 (2002).
[CrossRef]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
[CrossRef]

A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-IR-quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, "Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser," Spectrochim. Acta Part A 58, 2533-2539 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002).
[CrossRef]

2001 (10)

J. Kaiser, "The other global pollutant: nitrogen proves tough to curb," Science 294, 1268-1296 (2001).
[CrossRef] [PubMed]

A. Miklós, P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Quantum-cascade laser measurements of stratospheric methane and nitrous oxide," Appl. Opt. 40, 321-326 (2001).
[CrossRef]

M. E. Webber, D. S. Baer, and R. Hanson, "Ammonia monitoring near 1.5 μm with diode-laser absorption sensors," Appl. Opt. 40, 2031-2042 (2001).
[CrossRef]

A. Schmohl, A. Miklós, and P. Hess, "Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia," Appl. Opt. 40, 2571-2578 (2001).
[CrossRef]

D. Hofstetter, M. Beck, J. Faist, M. Nagele, and M. W. Sigrist, "Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers," Opt. Lett. 26, 887-889 (2001).
[CrossRef]

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001).
[CrossRef]

R. Claps, F. V. Englich, D. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, "Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases," Appl. Opt. 40, 4395-4403 (2001).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001).
[CrossRef]

1999 (1)

1998 (3)

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

1990 (1)

Allen, M. G.

Baer, D. S.

M. E. Webber, D. S. Baer, and R. Hanson, "Ammonia monitoring near 1.5 μm with diode-laser absorption sensors," Appl. Opt. 40, 2031-2042 (2001).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Baghdassarian, O.

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Baillargeon, J. N.

Beck, M.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002).
[CrossRef]

D. Hofstetter, M. Beck, J. Faist, M. Nagele, and M. W. Sigrist, "Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers," Opt. Lett. 26, 887-889 (2001).
[CrossRef]

Beyer, T.

T. Beyer, M. Braun, and A. Lambrecht, "Fast gas spectroscopy using pulsed quantum cascade lasers," J. Appl. Phys. 93, 3158-3160 (2003).
[CrossRef]

Bor, Z.

Bozoki, Z.

Bozóki, Z.

A. Miklós, P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

Braun, M.

T. Beyer, M. Braun, and A. Lambrecht, "Fast gas spectroscopy using pulsed quantum cascade lasers," J. Appl. Phys. 93, 3158-3160 (2003).
[CrossRef]

Capasso, F.

Cappasso, F.

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Chen, W.

Cho, A. Y.

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, "Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide," Appl. Opt. 41, 1169-1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser," Appl. Opt. 41, 573-578 (2002).
[CrossRef] [PubMed]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
[CrossRef]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Quantum-cascade laser measurements of stratospheric methane and nitrous oxide," Appl. Opt. 40, 321-326 (2001).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001).
[CrossRef]

B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Photoacoustic spectroscopy using quantum-cascade lasers," Opt. Lett. 24, 178-180 (1999).
[CrossRef]

Claps, R.

Colombelli, R.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
[CrossRef]

Courtois, E.

S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, "Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser," Spectrochim. Acta Part A 58, 2533-2539 (2002).
[CrossRef]

Curl, R. F.

da Silva, M. G.

M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, "Photoacoustic detection of ozone using quantum cascade laser," Appl. Phys. B 78, 1513-1516 (2004).
[CrossRef]

Emmenegger, L.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004).
[CrossRef]

Englich, F. V.

Erdelyi, M.

Faist, J.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002).
[CrossRef]

D. Hofstetter, M. Beck, J. Faist, M. Nagele, and M. W. Sigrist, "Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers," Opt. Lett. 26, 887-889 (2001).
[CrossRef]

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Flesch, G. J.

Gmachl, C.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
[CrossRef]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, "Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide," Appl. Opt. 41, 1169-1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser," Appl. Opt. 41, 573-578 (2002).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Quantum-cascade laser measurements of stratospheric methane and nitrous oxide," Appl. Opt. 40, 321-326 (2001).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001).
[CrossRef]

B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Photoacoustic spectroscopy using quantum-cascade lasers," Opt. Lett. 24, 178-180 (1999).
[CrossRef]

Hanson, R.

Hanson, R. K.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, "Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases," Appl. Opt. 40, 4395-4403 (2001).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Harren, F. J. M.

Hess, P.

M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, "Photoacoustic detection of ozone using quantum cascade laser," Appl. Phys. B 78, 1513-1516 (2004).
[CrossRef]

A. Schmohl, A. Miklós, and P. Hess, "Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers," Appl. Opt. 41, 1815-1823 (2002).
[CrossRef] [PubMed]

A. Schmohl, A. Miklós, and P. Hess, "Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia," Appl. Opt. 40, 2571-2578 (2001).
[CrossRef]

A. Miklós, P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

Hofstetter, D.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002).
[CrossRef]

D. Hofstetter, M. Beck, J. Faist, M. Nagele, and M. W. Sigrist, "Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers," Opt. Lett. 26, 887-889 (2001).
[CrossRef]

Hüglin, C.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004).
[CrossRef]

Hutchinson, A. L.

Jaeger, T.

I. Linnerud, P. Kaspersen, and T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Jeffries, J. B.

Jiménez, J. I.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

Kaiser, J.

J. Kaiser, "The other global pollutant: nitrogen proves tough to curb," Science 294, 1268-1296 (2001).
[CrossRef] [PubMed]

Kaspersen, P.

I. Linnerud, P. Kaspersen, and T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Köhler, R.

Kolb, C. E.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

Kosterev, A.

Kosterev, A. A.

Lambrecht, A.

T. Beyer, M. Braun, and A. Lambrecht, "Fast gas spectroscopy using pulsed quantum cascade lasers," J. Appl. Phys. 93, 3158-3160 (2003).
[CrossRef]

Leleux, D.

Leleux, D. P.

Linnerud, I.

I. Linnerud, P. Kaspersen, and T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

MacDonald, T.

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Malinovsky, A. L.

Marchillac, N.

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Martins, White

White Martins (see http://www.praxair.com).

May, R. D.

McManus, J. B.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-IR-quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Miklós, A.

M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, "Photoacoustic detection of ozone using quantum cascade laser," Appl. Phys. B 78, 1513-1516 (2004).
[CrossRef]

A. Schmohl, A. Miklós, and P. Hess, "Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers," Appl. Opt. 41, 1815-1823 (2002).
[CrossRef] [PubMed]

A. Miklós, P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

A. Schmohl, A. Miklós, and P. Hess, "Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia," Appl. Opt. 40, 2571-2578 (2001).
[CrossRef]

Mitloehner, F. M.

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Mohacsi, A.

Nagele, M.

Narasimhan, L. R.

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Nelson, D. D.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-IR-quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

Niklès, M.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004).
[CrossRef]

Oomens, J.

Paldus, B. A.

Parker, D. H.

Patel, C. K. N.

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, "Ultrasensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Pushkarsky, M. B.

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, "Ultrasensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Richter, D.

Robert, P. A.

S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, "Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser," Spectrochim. Acta Part A 58, 2533-2539 (2002).
[CrossRef]

Rochat, M.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002).
[CrossRef]

Rooth, R. A.

Schilt, S.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004).
[CrossRef]

S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, "Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser," Spectrochim. Acta Part A 58, 2533-2539 (2002).
[CrossRef]

Schmohl, A.

Scott, D. C.

Sergent, A. M.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
[CrossRef]

Shorter, J. H.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-IR-quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

Sigrist, M. W.

Sivco, D. L.

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser," Appl. Opt. 41, 573-578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, "Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide," Appl. Opt. 41, 1169-1173 (2002).
[CrossRef] [PubMed]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
[CrossRef]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Quantum-cascade laser measurements of stratospheric methane and nitrous oxide," Appl. Opt. 40, 321-326 (2001).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001).
[CrossRef]

B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Photoacoustic spectroscopy using quantum-cascade lasers," Opt. Lett. 24, 178-180 (1999).
[CrossRef]

Spence, T. G.

Straub, A.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
[CrossRef]

Swanson, J. E.

Szabo, G.

Thévenaz, L.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004).
[CrossRef]

S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, "Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser," Spectrochim. Acta Part A 58, 2533-2539 (2002).
[CrossRef]

Tittel, F.

Tittel, F. K.

A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004).
[CrossRef] [PubMed]

A. A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser," Appl. Opt. 41, 573-578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, "Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide," Appl. Opt. 41, 1169-1173 (2002).
[CrossRef] [PubMed]

R. F. Curl and F. K. Tittel, "Tunable infrared laser spectroscopy," Annu. Rep. Prog. Chem. Sect. C 98, 217-270 (2002).
[CrossRef]

A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002).
[CrossRef]

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001).
[CrossRef]

R. Claps, F. V. Englich, D. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, "Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases," Appl. Opt. 40, 4395-4403 (2001).
[CrossRef]

Vargas, H.

M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, "Photoacoustic detection of ozone using quantum cascade laser," Appl. Phys. B 78, 1513-1516 (2004).
[CrossRef]

Verhage, A. J. L.

Webber, M. E.

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, "Ultrasensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

M. E. Webber, D. S. Baer, and R. Hanson, "Ammonia monitoring near 1.5 μm with diode-laser absorption sensors," Appl. Opt. 40, 2031-2042 (2001).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, "Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases," Appl. Opt. 40, 4395-4403 (2001).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Webster, C. R.

Wehe, S.

Woodward, W. S.

Wouters, L. W.

Zahniser, M. S.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-IR-quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

Zare, R. N.

Zhao, Y.-J.

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Annu. Rep. Prog. Chem. Sect. C (1)

R. F. Curl and F. K. Tittel, "Tunable infrared laser spectroscopy," Annu. Rep. Prog. Chem. Sect. C 98, 217-270 (2002).
[CrossRef]

Appl. Opt. (13)

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001).
[CrossRef]

R. Claps, F. V. Englich, D. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, "Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases," Appl. Opt. 40, 4395-4403 (2001).
[CrossRef]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser," Appl. Opt. 41, 573-578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, "Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide," Appl. Opt. 41, 1169-1173 (2002).
[CrossRef] [PubMed]

A. Schmohl, A. Miklós, and P. Hess, "Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers," Appl. Opt. 41, 1815-1823 (2002).
[CrossRef] [PubMed]

A. A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004).
[CrossRef] [PubMed]

A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004).
[CrossRef] [PubMed]

R. A. Rooth, A. J. L. Verhage, and L. W. Wouters, "Photoacoustic measurement of ammonia in the atmosphere:influence of water vapor and carbon dioxide," Appl. Opt. 29, 3643-3653 (1990).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Quantum-cascade laser measurements of stratospheric methane and nitrous oxide," Appl. Opt. 40, 321-326 (2001).
[CrossRef]

M. E. Webber, D. S. Baer, and R. Hanson, "Ammonia monitoring near 1.5 μm with diode-laser absorption sensors," Appl. Opt. 40, 2031-2042 (2001).
[CrossRef]

A. Schmohl, A. Miklós, and P. Hess, "Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia," Appl. Opt. 40, 2571-2578 (2001).
[CrossRef]

Appl. Phys. B (8)

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-IR-quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002).
[CrossRef]

M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, "Photoacoustic detection of ozone using quantum cascade laser," Appl. Phys. B 78, 1513-1516 (2004).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, "Ultrasensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (2)

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002).
[CrossRef]

A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
[CrossRef]

J. Appl. Phys. (1)

T. Beyer, M. Braun, and A. Lambrecht, "Fast gas spectroscopy using pulsed quantum cascade lasers," J. Appl. Phys. 93, 3158-3160 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

A. Miklós, P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

Science (1)

J. Kaiser, "The other global pollutant: nitrogen proves tough to curb," Science 294, 1268-1296 (2001).
[CrossRef] [PubMed]

Spectrochim. Acta A (1)

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004).
[CrossRef]

Spectrochim. Acta Part A (1)

S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, "Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser," Spectrochim. Acta Part A 58, 2533-2539 (2002).
[CrossRef]

Other (5)

http://europa.eu.int/comm/agriculture/envir/report/en/acid_en/ report.htm.

http://www.inchem.org/documents/ehc/ehc/ehc54.htm.

Official site of Canada's National Occupational Health and Safety Resource:http://www.ccohs.ca/oshanswers/chemicals/chem_profiles/ammonia/health_ammonia.html, 28 September 2005.

White Martins (see http://www.praxair.com).

http://www.hitran.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup applied for the QCL detection of ammonia by resonant PA spectroscopy with reference gases (100 and 5 ppmv) for calibration and zero gas (nitrogen) for mixing and to determine the background.MFC, mass flow controller.

Fig. 2
Fig. 2

PA signal saturation curves as a function of time for flows of 70.7 and 106 SCCM for a mixture of 97.3 ppmv NH3 in synthetic air.

Fig. 3
Fig. 3

Spectrum of 100 ppmv NH3 in synthetic air:points, measured PA spectrum; solid curve, HITRAN spectrum convolved by Gaussian emission line shapes of the QCL with FWHM varying linearly between 0.09 and 0.15 cm−1 in the investigated spectral region. The measured FWHM values of the three ammonia absorption peaks are 0.33, 0.40, and 0.41 cm−1.

Fig. 4
Fig. 4

Calibration curve demonstrating the linear dependence of the PA signal on the NH3 concentration for QCL excitation at 1046.5 cm−1 in the ppmv range.

Fig. 5
Fig. 5

Calibration curve demonstrating the linear dependence of the PA signal on the NH3 concentration for QCL excitation at 1046.5 cm−1 in the ppbv range. The background signal is also indicated.

Metrics