Abstract

GaInAsSb/GaAlAsSb/GaSbdistributed-feedback (DFB) laser diodes based on a type I active region were fabricated by molecular beam epitaxy at the Centre d'Electronique et de Micro-Optoélectronique de Montpellier (CEM2). The DFB processing was done by Nanoplus Nanosystems and Technologies GmbH. The devices work in the continuous-wave regime above room temperature around an emission wavelength of 2.3  μm with a side-mode suppression ratio greater than 25   dB and as great as 10   mW of output power. The laser devices are fully characterized in terms of optical and electrical properties. Their tuning properties made them adaptable to tunable diode laser absorption spectroscopy because they exhibit more than 220   GHz of continuous tuning by temperature or current. The direct absorption of CH4 is demonstrated to be possible with high spectral selectivity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).
  2. A. Salhi, Y. Rouillard, J. Angellier, and M. Garcia, "Very low threshold 2.4 μm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime," IEEE Photon. Technol. Lett. 16, 2424-2426 (2004).
    [CrossRef]
  3. D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
    [CrossRef]
  4. C. Lin, M. Grau, O. Dier, and M. C. Amann, "Low-threshold room-temperature cw operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004).
    [CrossRef]
  5. A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
    [CrossRef]
  6. D. B. Oh and A. Stanton, "Measurement of nitric oxide with an antimonide diode laser," Appl. Opt. 36, 3294-3297 (1997).
    [CrossRef] [PubMed]
  7. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, "In situ combustion measurements of CO with diode-laser absorption near 2.3 μm," Appl. Opt. 39, 5579-5589 (2000).
    [CrossRef]
  8. V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004).
    [CrossRef]
  9. D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzman, and A. Yariv, "Self-stabilized nonlinear lateral modes of broad area lasers," IEEE J. Quantum Electron. 23, 1909-1920 (1987).
    [CrossRef]
  10. M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
    [CrossRef]
  11. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
    [CrossRef]
  12. L. A. Coldren and S. W. Corzine, "Dynamic effects," in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (Wiley Interscience, 1995), Chap. 5, pp. 221.
  13. M. Hummer, K. Rossner, A. Benkert, and A. Forchel, "GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 μm," IEEE Photon. Technol. Lett. 16, 380-382 (2004).
    [CrossRef]
  14. A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
    [CrossRef]
  15. D. T. Cassidy, "Technique for measurement of the gain spectra of semiconductor diode lasers," J. Appl. Phys. 56, 3096-3099 (1984).
    [CrossRef]
  16. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, "Effects of laser phase noise on the injection of a high-finesse cavity," Appl. Opt. 41, 6980-6990 (2002).
    [CrossRef] [PubMed]
  17. L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002).
    [CrossRef]
  18. S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
    [CrossRef]
  19. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and A. H. Smith, "The HITRAN database:1986 edition," Appl. Opt. 26, 4058-4097 (1987).
    [CrossRef] [PubMed]

2004 (5)

A. Salhi, Y. Rouillard, J. Angellier, and M. Garcia, "Very low threshold 2.4 μm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime," IEEE Photon. Technol. Lett. 16, 2424-2426 (2004).
[CrossRef]

C. Lin, M. Grau, O. Dier, and M. C. Amann, "Low-threshold room-temperature cw operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004).
[CrossRef]

V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004).
[CrossRef]

M. Hummer, K. Rossner, A. Benkert, and A. Forchel, "GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 μm," IEEE Photon. Technol. Lett. 16, 380-382 (2004).
[CrossRef]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

2003 (1)

A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
[CrossRef]

2002 (3)

J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, "Effects of laser phase noise on the injection of a high-finesse cavity," Appl. Opt. 41, 6980-6990 (2002).
[CrossRef] [PubMed]

L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002).
[CrossRef]

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
[CrossRef]

2001 (1)

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

2000 (1)

1997 (1)

1996 (1)

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

1987 (2)

1984 (1)

D. T. Cassidy, "Technique for measurement of the gain spectra of semiconductor diode lasers," J. Appl. Phys. 56, 3096-3099 (1984).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Alibert, C.

A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
[CrossRef]

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Amann, M. C.

C. Lin, M. Grau, O. Dier, and M. C. Amann, "Low-threshold room-temperature cw operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004).
[CrossRef]

Angellier, J.

A. Salhi, Y. Rouillard, J. Angellier, and M. Garcia, "Very low threshold 2.4 μm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime," IEEE Photon. Technol. Lett. 16, 2424-2426 (2004).
[CrossRef]

Baer, D. S.

Baranov, A. N.

A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
[CrossRef]

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
[CrossRef]

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Barbe, A.

Belenky, G. L.

L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002).
[CrossRef]

Benkert, A.

M. Hummer, K. Rossner, A. Benkert, and A. Forchel, "GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 μm," IEEE Photon. Technol. Lett. 16, 380-382 (2004).
[CrossRef]

Bleuel, T.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Boissier, G.

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Brown, L. R.

Camy-Peyret, C.

Cassidy, D. T.

D. T. Cassidy, "Technique for measurement of the gain spectra of semiconductor diode lasers," J. Appl. Phys. 56, 3096-3099 (1984).
[CrossRef]

Chenevier, M.

Coldren, L. A.

L. A. Coldren and S. W. Corzine, "Dynamic effects," in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (Wiley Interscience, 1995), Chap. 5, pp. 221.

Connolly, J. C.

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, "In situ combustion measurements of CO with diode-laser absorption near 2.3 μm," Appl. Opt. 39, 5579-5589 (2000).
[CrossRef]

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

Corzine, S. W.

L. A. Coldren and S. W. Corzine, "Dynamic effects," in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (Wiley Interscience, 1995), Chap. 5, pp. 221.

Dier, O.

C. Lin, M. Grau, O. Dier, and M. C. Amann, "Low-threshold room-temperature cw operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004).
[CrossRef]

Durry, G.

V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004).
[CrossRef]

Fischer, M.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Flaud, J. M.

Forchel, A.

M. Hummer, K. Rossner, A. Benkert, and A. Forchel, "GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 μm," IEEE Photon. Technol. Lett. 16, 380-382 (2004).
[CrossRef]

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Gaillard, S.

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
[CrossRef]

Gamache, R. R.

Garbuzov, D. Z.

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, "In situ combustion measurements of CO with diode-laser absorption near 2.3 μm," Appl. Opt. 39, 5579-5589 (2000).
[CrossRef]

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

Garcia, M.

A. Salhi, Y. Rouillard, J. Angellier, and M. Garcia, "Very low threshold 2.4 μm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime," IEEE Photon. Technol. Lett. 16, 2424-2426 (2004).
[CrossRef]

Genty, F.

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Glastre, G.

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Goldman, A.

Gourevitch, A.

L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002).
[CrossRef]

Grau, M.

C. Lin, M. Grau, O. Dier, and M. C. Amann, "Low-threshold room-temperature cw operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004).
[CrossRef]

Grech, P.

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Hanson, R. K.

Hofmann, J.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Hummer, M.

M. Hummer, K. Rossner, A. Benkert, and A. Forchel, "GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 μm," IEEE Photon. Technol. Lett. 16, 380-382 (2004).
[CrossRef]

Husson, N.

Joly, L.

V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004).
[CrossRef]

Joullie, A.

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Kachanov, A.

Kamp, M.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Kim, J. G.

L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002).
[CrossRef]

Koeth, J.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Lang, R. J.

D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzman, and A. Yariv, "Self-stabilized nonlinear lateral modes of broad area lasers," IEEE J. Quantum Electron. 23, 1909-1920 (1987).
[CrossRef]

Lee, H.

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

Lin, C.

C. Lin, M. Grau, O. Dier, and M. C. Amann, "Low-threshold room-temperature cw operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004).
[CrossRef]

Maiorov, M.

Martinelli, R. U.

L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002).
[CrossRef]

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

Mattiello, M.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

Mehuys, D.

D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzman, and A. Yariv, "Self-stabilized nonlinear lateral modes of broad area lasers," IEEE J. Quantum Electron. 23, 1909-1920 (1987).
[CrossRef]

Menna, R. J.

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

Mittelstein, M.

D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzman, and A. Yariv, "Self-stabilized nonlinear lateral modes of broad area lasers," IEEE J. Quantum Electron. 23, 1909-1920 (1987).
[CrossRef]

Morville, J.

Narayan, S. Y.

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

Oh, D. B.

Ouvrard, A.

A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
[CrossRef]

Parvitte, B.

V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004).
[CrossRef]

Perona, A.

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
[CrossRef]

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Pickett, H. M.

Poynter, R. L.

Reinhard, M.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Reithmaier, J. P.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Rinsland, C. P.

Romanini, D.

Rossner, K.

M. Hummer, K. Rossner, A. Benkert, and A. Forchel, "GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 μm," IEEE Photon. Technol. Lett. 16, 380-382 (2004).
[CrossRef]

Rothman, L. S.

Rouillard, Y.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

A. Salhi, Y. Rouillard, J. Angellier, and M. Garcia, "Very low threshold 2.4 μm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime," IEEE Photon. Technol. Lett. 16, 2424-2426 (2004).
[CrossRef]

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
[CrossRef]

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Salhi, A.

A. Salhi, Y. Rouillard, J. Angellier, and M. Garcia, "Very low threshold 2.4 μm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime," IEEE Photon. Technol. Lett. 16, 2424-2426 (2004).
[CrossRef]

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

Salzman, J.

D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzman, and A. Yariv, "Self-stabilized nonlinear lateral modes of broad area lasers," IEEE J. Quantum Electron. 23, 1909-1920 (1987).
[CrossRef]

Schafer, F.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Schilt, S.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Shterengas, L.

L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002).
[CrossRef]

Skouri, E. M.

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Smith, A. H.

Stanton, A.

Teissier, R.

A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
[CrossRef]

Thévenaz, L.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

Toth, R. A.

Vicet, A.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004).
[CrossRef]

A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
[CrossRef]

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
[CrossRef]

Wang, J.

Werner, R.

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

Yarekha, D. A.

A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
[CrossRef]

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
[CrossRef]

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

Yariv, A.

D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzman, and A. Yariv, "Self-stabilized nonlinear lateral modes of broad area lasers," IEEE J. Quantum Electron. 23, 1909-1920 (1987).
[CrossRef]

York, P. K.

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

Zeninari, V.

V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002).
[CrossRef]

D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996).
[CrossRef]

C. Lin, M. Grau, O. Dier, and M. C. Amann, "Low-threshold room-temperature cw operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004).
[CrossRef]

IEE Proc. Optoelectron. (1)

A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzman, and A. Yariv, "Self-stabilized nonlinear lateral modes of broad area lasers," IEEE J. Quantum Electron. 23, 1909-1920 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Salhi, Y. Rouillard, J. Angellier, and M. Garcia, "Very low threshold 2.4 μm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime," IEEE Photon. Technol. Lett. 16, 2424-2426 (2004).
[CrossRef]

M. Hummer, K. Rossner, A. Benkert, and A. Forchel, "GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 μm," IEEE Photon. Technol. Lett. 16, 380-382 (2004).
[CrossRef]

Infrared Phys. Technol. (1)

V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004).
[CrossRef]

J. Appl. Phys. (2)

D. T. Cassidy, "Technique for measurement of the gain spectra of semiconductor diode lasers," J. Appl. Phys. 56, 3096-3099 (1984).
[CrossRef]

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Opt. Mater. (1)

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Spectrochim. Acta A (1)

S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004).
[CrossRef]

Spectrochim. Acta Part A (1)

A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002).
[CrossRef]

Other (2)

D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).

L. A. Coldren and S. W. Corzine, "Dynamic effects," in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (Wiley Interscience, 1995), Chap. 5, pp. 221.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

SEM picture of a ridge waveguide structure. The ridge is 4.7 μm wide and 1.55 μm high.

Fig. 2
Fig. 2

SEM picture of the lateral metal grating.

Fig. 3
Fig. 3

Continuous-wave regime LIV characteristic of diode 4–5 (L from the front facet). The LI characteristic is given for different device temperatures from 20 °C to 60 °C, giving T 0 = 120 K (inset).

Fig. 4
Fig. 4

Vertical (growth axis) and horizontal far-field beam intensity distribution recorded with a Xenics linear photodiode array: I = 100 mA, T = 298 K. The optical pattern on the vertical intensity distribution is stable and is due to interference in the laser window and diffraction on the copper block.

Fig. 5
Fig. 5

Beam waist (1∕e 2) (millimeters) along the horizontal and the vertical axis as a function of the distance (centimeters) of the linear array from the near field.

Fig. 6
Fig. 6

(Color online) Continuous temperature tuning of three lasers at a fixed drive current, I = 100 mA, from 19 °C to 45 °C. An emission spectra is in the inset, corresponding to laser 13-15 at T = 25 °C. The SMSR reaches 35 dB.

Fig. 7
Fig. 7

(Color online) Continuous current tuning of three devices at different temperatures. The tuning rate deduced from the transmitted intensity through a Ge Fabry–Perot etalon is plotted in the inset for laser 15-08.

Fig. 8
Fig. 8

Laser (active region) temperature against the drive current, deduced from spectra (squares) and thermal resistance (fitted curve) when Eq. (1) is used. One can deduce a value of R th = 130 ± 10 K∕W.

Fig. 9
Fig. 9

(Color online) Low-resolution amplified spontaneous emission spectra from the front diode facet (uncoated) recorded as a function of the excitation current below threshold. Dotted lines, Fermi distribution function for energies above the Fermi quasi-levels. The monochromator resolution is 1 nm, T= 300 K, cw regime.

Fig. 10
Fig. 10

(Color online) High-resolution amplified spontaneous emission spectra from the front diode facet (uncoated) recorded as a function of the excitation current below threshold. Monochromator resolution, 0.11 nm. Note the little kinks induced by the grating at 2.35 and 2.364 μm, corresponding to the loss modulation of ∼1 cm−1. Inset, enlargement showing Fabry–Perot-mode oscillations. T = 300 K, cw regime.

Fig. 11
Fig. 11

(Color online) Processed high-resolution amplified spontaneous emission spectra, showing the net modal gain (averaged over three adjacent modes) of the device active region as a function of the excitation current. T = 300 K, cw regime. Dotted line, optical cavity loss at transparency; short vertical curves, position of the Fermi quasi-level separation.

Fig. 12
Fig. 12

Measured material gain peak per quantum well (QW) and gain spectral bandwidth Δλ g as a function of the current density per quantum well. T = 300 K, cw regime. The Δλ g value is obtained by fitting the top gain spectrum by a parabola centered at the peak value. The gain peak value has been corrected to take into account the resolution limitation. Inset, energy separation ΔEF between the quasi-Fermi levels and the gain peak energy E peak as a function of current density.

Fig. 13
Fig. 13

Distributed feedback laser linewidth obtained by estimating the FWHM of the resonances of a high-finesse interferometer (see text for details). The diode laser driving current and its operating temperature are kept constant (I = 120 mA, T = 300 K).

Fig. 14
Fig. 14

(Color online) An 18 mm long cell containing pure CH4 used to perform direct absorption measurements:The theoretical transmission of the cell is computed with the HITRAN 96 database. Inset, experimental transmission of the cell measured with a single laser. The device was tuned with the current and temperature to reach a very large tuning range, as large as 7 nm.

Tables (1)

Tables Icon

Table 1 Distributed Feedback Diode Laser Parameters Measured and Computed a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

M 2 = ( π / λ ) w θ ,
SMSR ( dB ) 10 log ( Δ α + Δ g δ g + 1 )
δ g = [ α i ln ( R 1 R 2 ) 2 L c ] β sp η r I th I I th ,
T device ( I ) = T support ( I ) + R th P th ( I ) ,
δ v c = 2 π h c η 0 λ P 0 ( δ v c ) 2 ( 1 + α factor                           2 ) ξ ,
η 0 ln ( R 1 ) 2 L c α i ln ( R 1 R 2 ) .

Metrics