Abstract

Multimode interference (MMI) devices are useful for power splitting and for the separation or combination of wavelengths or polarizations, usually in integrated optics. Input–output guides connect to the MMI region by ports. In all previously reported MMI devices, the input and output guides connect only to the ends of the MMI region; i.e., they are end ported. What is believed to be a novel arrangement of the input–output ports on MMI devices is described. By placing input–output ports either partially or entirely on the sides of the MMI region (i.e., side porting), a variety of benefits are achieved and a variety of new devices can be made.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bachmann, P. A. Besse, and H. Melchior, "General self-imaging properties in N × N multimode interference couplers including phase relations," Appl. Opt. 33, 3905-3911 (1994).
    [CrossRef] [PubMed]
  2. L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  3. M. Blahut and A. Opilski, "Multimode interference structures--new way of passive elements technology for photonics," Opto-Electron. Rev. 9, 293-300 (2001).
  4. E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.
  5. E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
    [CrossRef]
  6. B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000).
    [CrossRef]
  7. L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
    [CrossRef]
  8. H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, and M.-H. Wang, "Compact and economical MMI optical power splitter for optical communication," Chin. J. Semicond. 21, 966-969 (2000).
  9. D. M. Mackie, H. K. Kim, and C. M. Fitzpatrick, "Integrated, optically pumped, lossless splitters: progress and challenges," in Proceedings of the 22nd Army Science Conference (2000), pp. 51-52.
  10. K. C. Lin and W. Y. Lee, "Guided-wave 1.3/1.55-mm wavelength division multiplexer based on multimode interference," Electron. Lett. 32, 1259-1261 (1996).
    [CrossRef]
  11. D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.
  12. D. M. Mackie, "Self-imaging waveguide optical polarization or wavelength splitters," U.S. patent 5,838,842 (17 November 1998).
  13. D. M. Mackie, "Self-imaging waveguide optical polarization or wavelength splitters," U.S. patent 5,852,691 (22 December 1998).
  14. T. Tayag and T. Batchman, "Self-imaging waveguide devices for wavelength division multiplexing applications," U.S. patent 5,862,288 (19 January 1999).
  15. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
    [CrossRef]
  16. M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
    [CrossRef]
  17. D. M. Mackie, "End-pumped waveguide optical splitter-amplifiers based on self-imaging," U.S. patent 6,178,276 (23 January 2001).
  18. G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.
  19. D. M. Mackie, T. J. Tayag, and T. E. Batchman, "Polarization separation/combination based on self-imaging," Opt. Eng. 40, 2265-2272 (2001).
    [CrossRef]
  20. B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).
  21. S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside," in Proc. SPIE 4453, 162-169 (2001).
    [CrossRef]
  22. S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "An SOI X-crossing optical switch," in Proc. SPIE 4458, 269-277 (2001).
    [CrossRef]
  23. D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, "A new design for ultracompact multimode interference-based 2 × 2 couplers," IEEE Photon. Technol. Lett. 10, 96-98 (1998).
    [CrossRef]
  24. D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
    [CrossRef]
  25. D. S. Levy, R. Scarmozzino, and R. M. Osgood, "Length reduction of tapered N × N MMI devices," IEEE Photon. Technol. Lett. 10, 830-832 (1998).
    [CrossRef]
  26. J. C. Campbell and T. Li, "Electro-optic multimode waveguide modulator or switch," J. Appl. Phys. 50, 6149-6154 (1979).
    [CrossRef]
  27. M. P. Earnshaw and D. W. E. Allsopp, "Semiconductor space switches based on multimode interference couplers," J. Lightwave Technol. 20, 643-650 (2002).
    [CrossRef]
  28. D. M. Mackie and A. W. Lee, "Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters," poster presentation at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1 -6 June 2003.
  29. D. M. Mackie and A. W. Lee, "Slotted multimode interference devices," Appl. Opt. 43, 6609-6619 (2004).
    [CrossRef]
  30. D. M. Mackie, "Slotted multimode interference devices," U.S. patent 7,035,494 (25 April 2006).
  31. T. J. Tayag, D. M. Mackie, and G. W. Bryant, "A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters," IEEE Photon. Technol. Lett. 7, 896-898 (1995).
    [CrossRef]
  32. T. J. Tayag, "Easily manufacturable optical self-imaging waveguide," U.S. patent 5,640,474 (17 June 1997).
  33. D. M. Mackie and T. J. Tayag, "Form-birefringence in waveguide devices," in Integrated Photonics Research, Vol. 78 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. IThl6-1-IThl6-3.

2004 (1)

2002 (1)

2001 (5)

M. Blahut and A. Opilski, "Multimode interference structures--new way of passive elements technology for photonics," Opto-Electron. Rev. 9, 293-300 (2001).

D. M. Mackie, T. J. Tayag, and T. E. Batchman, "Polarization separation/combination based on self-imaging," Opt. Eng. 40, 2265-2272 (2001).
[CrossRef]

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside," in Proc. SPIE 4453, 162-169 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "An SOI X-crossing optical switch," in Proc. SPIE 4458, 269-277 (2001).
[CrossRef]

2000 (3)

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000).
[CrossRef]

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
[CrossRef]

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, and M.-H. Wang, "Compact and economical MMI optical power splitter for optical communication," Chin. J. Semicond. 21, 966-969 (2000).

1999 (3)

T. Tayag and T. Batchman, "Self-imaging waveguide devices for wavelength division multiplexing applications," U.S. patent 5,862,288 (19 January 1999).

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

1998 (2)

D. S. Levy, R. Scarmozzino, and R. M. Osgood, "Length reduction of tapered N × N MMI devices," IEEE Photon. Technol. Lett. 10, 830-832 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, "A new design for ultracompact multimode interference-based 2 × 2 couplers," IEEE Photon. Technol. Lett. 10, 96-98 (1998).
[CrossRef]

1997 (1)

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

1996 (1)

K. C. Lin and W. Y. Lee, "Guided-wave 1.3/1.55-mm wavelength division multiplexer based on multimode interference," Electron. Lett. 32, 1259-1261 (1996).
[CrossRef]

1995 (3)

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

T. J. Tayag, D. M. Mackie, and G. W. Bryant, "A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters," IEEE Photon. Technol. Lett. 7, 896-898 (1995).
[CrossRef]

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

1994 (1)

1979 (1)

J. C. Campbell and T. Li, "Electro-optic multimode waveguide modulator or switch," J. Appl. Phys. 50, 6149-6154 (1979).
[CrossRef]

Allsopp, D. W. E.

Alvarez, F.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

Bachmann, M.

Batchman, T.

T. Tayag and T. Batchman, "Self-imaging waveguide devices for wavelength division multiplexing applications," U.S. patent 5,862,288 (19 January 1999).

Batchman, T. E.

D. M. Mackie, T. J. Tayag, and T. E. Batchman, "Polarization separation/combination based on self-imaging," Opt. Eng. 40, 2265-2272 (2001).
[CrossRef]

Besse, P. A.

Blahut, M.

M. Blahut and A. Opilski, "Multimode interference structures--new way of passive elements technology for photonics," Opto-Electron. Rev. 9, 293-300 (2001).

Brock, J.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

Brock, J. C.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

Broughton, J. N.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

Bryant, G. W.

T. J. Tayag, D. M. Mackie, and G. W. Bryant, "A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters," IEEE Photon. Technol. Lett. 7, 896-898 (1995).
[CrossRef]

Campbell, J. C.

J. C. Campbell and T. Li, "Electro-optic multimode waveguide modulator or switch," J. Appl. Phys. 50, 6149-6154 (1979).
[CrossRef]

Chang, H.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

Chen, Y.-J.

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "An SOI X-crossing optical switch," in Proc. SPIE 4458, 269-277 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside," in Proc. SPIE 4453, 162-169 (2001).
[CrossRef]

Choi, M.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

Dries, C.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Earnshaw, M. P.

Euliss, G. W.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
[CrossRef]

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.

Fitzpatrick, C. M.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000).
[CrossRef]

D. M. Mackie, H. K. Kim, and C. M. Fitzpatrick, "Integrated, optically pumped, lossless splitters: progress and challenges," in Proceedings of the 22nd Army Science Conference (2000), pp. 51-52.

Forrest, S.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Grattan, K. T. V.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).

Guo, H.-C.

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "An SOI X-crossing optical switch," in Proc. SPIE 4458, 269-277 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside," in Proc. SPIE 4453, 162-169 (2001).
[CrossRef]

Harrison, L. J.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
[CrossRef]

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.

Janz, C. F.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

Jiang, X.-Q.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, and M.-H. Wang, "Compact and economical MMI optical power splitter for optical communication," Chin. J. Semicond. 21, 966-969 (2000).

Jiang, Z.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
[CrossRef]

Johnson, R.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

Kang, B.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

Kim, E.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000).
[CrossRef]

Kim, G.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

Kim, H. K.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000).
[CrossRef]

D. M. Mackie, H. K. Kim, and C. M. Fitzpatrick, "Integrated, optically pumped, lossless splitters: progress and challenges," in Proceedings of the 22nd Army Science Conference (2000), pp. 51-52.

Kim, S.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

Kunkee, E. T.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

Kuykendall, D.

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.

Leavitt, R. P.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
[CrossRef]

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.

Lee, A. W.

D. M. Mackie and A. W. Lee, "Slotted multimode interference devices," Appl. Opt. 43, 6609-6619 (2004).
[CrossRef]

D. M. Mackie and A. W. Lee, "Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters," poster presentation at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1 -6 June 2003.

Lee, B.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000).
[CrossRef]

Lee, S.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

Lee, W. Y.

K. C. Lin and W. Y. Lee, "Guided-wave 1.3/1.55-mm wavelength division multiplexer based on multimode interference," Electron. Lett. 32, 1259-1261 (1996).
[CrossRef]

Leight, J.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

Lembo, L.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

Lembo, L. J.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

Levy, D. S.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

D. S. Levy, R. Scarmozzino, and R. M. Osgood, "Length reduction of tapered N × N MMI devices," IEEE Photon. Technol. Lett. 10, 830-832 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, "A new design for ultracompact multimode interference-based 2 × 2 couplers," IEEE Photon. Technol. Lett. 10, 96-98 (1998).
[CrossRef]

Li, B.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
[CrossRef]

Li, G.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
[CrossRef]

Li, T.

J. C. Campbell and T. Li, "Electro-optic multimode waveguide modulator or switch," J. Appl. Phys. 50, 6149-6154 (1979).
[CrossRef]

Li, Y. M.

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, "A new design for ultracompact multimode interference-based 2 × 2 couplers," IEEE Photon. Technol. Lett. 10, 96-98 (1998).
[CrossRef]

Lin, K. C.

K. C. Lin and W. Y. Lee, "Guided-wave 1.3/1.55-mm wavelength division multiplexer based on multimode interference," Electron. Lett. 32, 1259-1261 (1996).
[CrossRef]

Liu, E.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
[CrossRef]

Ma, H.-L.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, and M.-H. Wang, "Compact and economical MMI optical power splitter for optical communication," Chin. J. Semicond. 21, 966-969 (2000).

MacDonald, R. I.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

Mackie, D. M.

D. M. Mackie and A. W. Lee, "Slotted multimode interference devices," Appl. Opt. 43, 6609-6619 (2004).
[CrossRef]

D. M. Mackie, T. J. Tayag, and T. E. Batchman, "Polarization separation/combination based on self-imaging," Opt. Eng. 40, 2265-2272 (2001).
[CrossRef]

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000).
[CrossRef]

T. J. Tayag, D. M. Mackie, and G. W. Bryant, "A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters," IEEE Photon. Technol. Lett. 7, 896-898 (1995).
[CrossRef]

D. M. Mackie, "Self-imaging waveguide optical polarization or wavelength splitters," U.S. patent 5,852,691 (22 December 1998).

D. M. Mackie, H. K. Kim, and C. M. Fitzpatrick, "Integrated, optically pumped, lossless splitters: progress and challenges," in Proceedings of the 22nd Army Science Conference (2000), pp. 51-52.

D. M. Mackie and A. W. Lee, "Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters," poster presentation at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1 -6 June 2003.

D. M. Mackie and T. J. Tayag, "Form-birefringence in waveguide devices," in Integrated Photonics Research, Vol. 78 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. IThl6-1-IThl6-3.

D. M. Mackie, "Self-imaging waveguide optical polarization or wavelength splitters," U.S. patent 5,838,842 (17 November 1998).

D. M. Mackie, "End-pumped waveguide optical splitter-amplifiers based on self-imaging," U.S. patent 6,178,276 (23 January 2001).

D. M. Mackie, "Slotted multimode interference devices," U.S. patent 7,035,494 (25 April 2006).

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.

Melchior, H.

Nichols, D.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

Opilski, A.

M. Blahut and A. Opilski, "Multimode interference structures--new way of passive elements technology for photonics," Opto-Electron. Rev. 9, 293-300 (2001).

Osgood, R. M.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

D. S. Levy, R. Scarmozzino, and R. M. Osgood, "Length reduction of tapered N × N MMI devices," IEEE Photon. Technol. Lett. 10, 830-832 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, "A new design for ultracompact multimode interference-based 2 × 2 couplers," IEEE Photon. Technol. Lett. 10, 96-98 (1998).
[CrossRef]

Paiam, M. R.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

Park, K. H.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Qin, J.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
[CrossRef]

Rahman, B. M. A.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).

Reitsma, C. L.

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.

Scarmozzino, R.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

D. S. Levy, R. Scarmozzino, and R. M. Osgood, "Length reduction of tapered N × N MMI devices," IEEE Photon. Technol. Lett. 10, 830-832 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, "A new design for ultracompact multimode interference-based 2 × 2 couplers," IEEE Photon. Technol. Lett. 10, 96-98 (1998).
[CrossRef]

Simonis, G. J.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Somasiri, N.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).

Stead, M.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
[CrossRef]

Studenkov, P.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Tayag, T.

T. Tayag and T. Batchman, "Self-imaging waveguide devices for wavelength division multiplexing applications," U.S. patent 5,862,288 (19 January 1999).

Tayag, T. J.

D. M. Mackie, T. J. Tayag, and T. E. Batchman, "Polarization separation/combination based on self-imaging," Opt. Eng. 40, 2265-2272 (2001).
[CrossRef]

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
[CrossRef]

T. J. Tayag, D. M. Mackie, and G. W. Bryant, "A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters," IEEE Photon. Technol. Lett. 7, 896-898 (1995).
[CrossRef]

D. M. Mackie and T. J. Tayag, "Form-birefringence in waveguide devices," in Integrated Photonics Research, Vol. 78 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. IThl6-1-IThl6-3.

T. J. Tayag, "Easily manufacturable optical self-imaging waveguide," U.S. patent 5,640,474 (17 June 1997).

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.

Themistos, C.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).

Tsao, S.-L.

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "An SOI X-crossing optical switch," in Proc. SPIE 4458, 269-277 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside," in Proc. SPIE 4453, 162-169 (2001).
[CrossRef]

Wang, M.-H.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, and M.-H. Wang, "Compact and economical MMI optical power splitter for optical communication," Chin. J. Semicond. 21, 966-969 (2000).

Wang, X.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
[CrossRef]

Woo, D.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

Yang, J.-Y.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, and M.-H. Wang, "Compact and economical MMI optical power splitter for optical communication," Chin. J. Semicond. 21, 966-969 (2000).

Zmudzinski, C.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

Appl. Opt. (2)

Appl. Phys. B (1)

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).

Chin. J. Semicond. (1)

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, and M.-H. Wang, "Compact and economical MMI optical power splitter for optical communication," Chin. J. Semicond. 21, 966-969 (2000).

Electron. Lett. (1)

K. C. Lin and W. Y. Lee, "Guided-wave 1.3/1.55-mm wavelength division multiplexer based on multimode interference," Electron. Lett. 32, 1259-1261 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000).
[CrossRef]

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
[CrossRef]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photon. Technol. Lett. 7, 1180-1182 (1995).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, "A new design for ultracompact multimode interference-based 2 × 2 couplers," IEEE Photon. Technol. Lett. 10, 96-98 (1998).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

D. S. Levy, R. Scarmozzino, and R. M. Osgood, "Length reduction of tapered N × N MMI devices," IEEE Photon. Technol. Lett. 10, 830-832 (1998).
[CrossRef]

T. J. Tayag, D. M. Mackie, and G. W. Bryant, "A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters," IEEE Photon. Technol. Lett. 7, 896-898 (1995).
[CrossRef]

J. Appl. Phys. (1)

J. C. Campbell and T. Li, "Electro-optic multimode waveguide modulator or switch," J. Appl. Phys. 50, 6149-6154 (1979).
[CrossRef]

J. Lightwave Technol. (2)

M. P. Earnshaw and D. W. E. Allsopp, "Semiconductor space switches based on multimode interference couplers," J. Lightwave Technol. 20, 643-650 (2002).
[CrossRef]

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Opt. Eng. (1)

D. M. Mackie, T. J. Tayag, and T. E. Batchman, "Polarization separation/combination based on self-imaging," Opt. Eng. 40, 2265-2272 (2001).
[CrossRef]

Opto-Electron. Rev. (1)

M. Blahut and A. Opilski, "Multimode interference structures--new way of passive elements technology for photonics," Opto-Electron. Rev. 9, 293-300 (2001).

Proc. SPIE (4)

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997).
[CrossRef]

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000).
[CrossRef]

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside," in Proc. SPIE 4453, 162-169 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "An SOI X-crossing optical switch," in Proc. SPIE 4458, 269-277 (2001).
[CrossRef]

Other (12)

D. M. Mackie, "Slotted multimode interference devices," U.S. patent 7,035,494 (25 April 2006).

T. J. Tayag, "Easily manufacturable optical self-imaging waveguide," U.S. patent 5,640,474 (17 June 1997).

D. M. Mackie and T. J. Tayag, "Form-birefringence in waveguide devices," in Integrated Photonics Research, Vol. 78 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. IThl6-1-IThl6-3.

D. M. Mackie and A. W. Lee, "Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters," poster presentation at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1 -6 June 2003.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.

D. M. Mackie, "Self-imaging waveguide optical polarization or wavelength splitters," U.S. patent 5,838,842 (17 November 1998).

D. M. Mackie, "Self-imaging waveguide optical polarization or wavelength splitters," U.S. patent 5,852,691 (22 December 1998).

T. Tayag and T. Batchman, "Self-imaging waveguide devices for wavelength division multiplexing applications," U.S. patent 5,862,288 (19 January 1999).

D. M. Mackie, H. K. Kim, and C. M. Fitzpatrick, "Integrated, optically pumped, lossless splitters: progress and challenges," in Proceedings of the 22nd Army Science Conference (2000), pp. 51-52.

D. M. Mackie, "End-pumped waveguide optical splitter-amplifiers based on self-imaging," U.S. patent 6,178,276 (23 January 2001).

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic top views (not to scale) of (a) a side-ported MMI-based device (either a 1 × 2 power splitter or a SCWP device, depending on the length), which requires no curved guides, and (b) a standard end-ported MMI-based device with off-center input. S-bend guides, which would be necessary to separate the output guides in (b), are not shown.

Fig. 2
Fig. 2

Schematic top view (not to scale) of a standard MMI-based 1 × 2 power splitter with centered input, which requires curved guides. The outputs must be separated from one another with S-bend guides as shown, and their initial separation may be small, which in practice leads to nonuniformity. The complicated structure of S-bend guides is indicated.

Fig. 3
Fig. 3

Schematic top view (not to scale) of a standard MMI-based Mach–Zehnder interferometer, which requires curved guides. It is composed of two end-ported MMI 1 × 2 power splitters–combiners, connected by two straight guides and four S-bend guides. (The individual parts of the S-bend guides are not shown.) There is also a phase-changing mechanism of some sort on one guide.

Fig. 4
Fig. 4

Schematic top view (not to scale) of a standard MMI-based 1 × 16 power splitter, which requires curved intermediate guides. It is composed of 15 end-ported MMI 1 × 2 power splitters in four rows of 1, 2, 4, and 8, connected by 14 intermediate S-bend guides, and ending with 16 half-S-bend guides. (The individual parts of the S-bend guides are not shown.)

Fig. 5
Fig. 5

Top views of the calculated electro-magnetic field evolution through side-ported MMI-based 1 × 2 power splitters for a device with (a) n = 3 and λ = 1 and (b) n = 1.5 and λ = 1.5.

Fig. 6
Fig. 6

Schematic top view (not to scale) of a side-ported MMI-based 1 × 16 power splitter, which requires no curved intermediate guides. It is composed of 15 side-ported MMI 1 × 2 power splitters in four rows of 1, 2, 4, and 8, connected by 14 intermediate straight guides. (The input and output guides are shown with optional curved sections.)

Fig. 7
Fig. 7

Schematic top view (not to scale) of a side-ported MMI-based MZI, which requires no curved guides. It is composed of two side-ported MMI 1 × 2 power splitters–combiners and two side-ported MMI turners, connected by straight guides (plus a phase-changing mechanism of some sort).

Fig. 8
Fig. 8

Top views of the calculated EM field evolution through side-ported MMI-based turners for a device with (a) n = 3 and λ = 1 and (b) n = 1.5 and λ = 1.5.

Fig. 9
Fig. 9

Schematic top view (not to scale) of a side-ported MMI-based SCWP device. The light enters at the bottom right side at an angle A. For one polarization (wavelength), the light is self-imaged at the upper left side output port at an angle A. For the other polarization (wavelength), the light is self-imaged at the upper right side output port at an angle A. The two output ports may be offset from one another by a distance d.

Fig. 10
Fig. 10

Top view of the calculated EM field evolution through a side-ported MMI-based SCWP device for (a) the pump and (b) the signal. (The offset d was applied to the left-hand output guide, rather than the right-hand guide as indicated in Fig. 9.)

Fig. 11
Fig. 11

Schematic top views (not to scale) of (a) a conventional end-ported slotted MMI-based switch and (b) a side-ported slotted MMI-based switch. The light enters at the bottom right. The slot can be turned on and off. For the slot-off (slot-on) condition, the light is self-imaged at the upper left (right) output port. S-bend guides, which would be necessary to separate the output guides in (a), are not shown. For (b), the input and output waveguides are at an angle A and the two output ports may be offset from one another by a distance d.

Fig. 12
Fig. 12

Top view of the calculated EM field evolution through a side-ported slotted MMI-based switch. The slot-off condition is shown in (a) and the slot-on condition is shown in (b).

Metrics