Abstract

Bragg grating reflectors etched in amorphous silicon overlay films have been integrated with Ti:LiNbO3 optical waveguides to obtain a narrow (0.05  nm) reflectance spectrum with a >20  dB dip in the transmittance spectrum. These results were realized at a wavelength of 1542 .7   nm for TE polarization on an x-cut, y-propagating substrate with gratings etched to a depth of 93   nm in a 105   nm thick silicon film over a length of 12 .5   mm. The reflectance in the channel waveguides is found to be strongly dependent on the depth of the etched grating. The effect of the Bragg waveguide loss factor on the transmittance and reflectance spectra is investigated by using a model for contradirectional coupling that includes an attenuation coefficient. The values for coupling constants κ and amplitude attenuation constants α of samples etched for different time durations to control the grating depths are obtained from the model through the use of the depth of the dips in the transmittance spectra and the spectral widths of the reflectance peaks. It is concluded that the corrugated Si overlay film increases the insertion loss by 2 .7   dB, and the loss is not significantly affected by the grating depth.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Shaw, W. J. Stewart, J. Heaton, and D. R. Wight, "Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators," Electron. Lett. 35, 1557-1558 (1999).
    [CrossRef]
  2. H. F. Taylor, "Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation," J. Lightwave Technol. 17, 1875-1883 (1999).
    [CrossRef]
  3. J. B. Khurgin, J. U. Kang, and Y. J. Ding, "Ultrabroad-bandwidth electro-optic modulator based on a cascaded Bragg grating," Opt. Lett. 25, 70-72 (2000).
    [CrossRef]
  4. A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
    [CrossRef]
  5. S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
    [CrossRef]
  6. B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
    [CrossRef]
  7. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).
  8. S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
    [CrossRef]
  9. H. Feng, R. F. Tavlykaev, and R. V. Ramaswamy, "Record-high reflectance in narrowband low-loss Bragg reflectors with Si-on-LiNbO3 waveguides," Electron. Lett. 35, 1636-1637 (1999).
    [CrossRef]
  10. B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
    [CrossRef]
  11. Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 37, 312-314 (2001).
    [CrossRef]
  12. B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, "Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange," IEEE Photonics Technol. Lett. 14, 1430-1433 (2002).
    [CrossRef]
  13. S. Pissadakis, L. Reekie, M. N. Zervas, and J. S. Wilkinson, "Grating in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining," Appl. Phys. Lett. 78, 694-696 (2001).
    [CrossRef]
  14. R. F. Carson and T. E. Batchman, "Multimode phenomena in semiconductor-clad dielectric optical waveguide structure," Appl. Opt. 29, 2769-2780 (1990).
    [CrossRef] [PubMed]
  15. G. M. McWright, T. E. Batchman, and M. S. Stanziano, "Measurement and analysis of periodic coupling in silicon-clad planar waveguides," IEEE J. Quantum Electron. QE-18, 1765-1771 (1982).
    [CrossRef]
  16. J. Kim, G. Li, and K. A. Winick, "Design and fabrication of a glass waveguide optical add-drop multiplexer by use of an amorphous-silicon overlay distributed Bragg reflector," Appl. Opt. 43, 671-677 (2004).
    [CrossRef] [PubMed]
  17. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  18. D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
    [CrossRef]

2004 (1)

2003 (2)

A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

2002 (1)

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, "Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange," IEEE Photonics Technol. Lett. 14, 1430-1433 (2002).
[CrossRef]

2001 (2)

S. Pissadakis, L. Reekie, M. N. Zervas, and J. S. Wilkinson, "Grating in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining," Appl. Phys. Lett. 78, 694-696 (2001).
[CrossRef]

Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 37, 312-314 (2001).
[CrossRef]

2000 (1)

1999 (5)

H. F. Taylor, "Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation," J. Lightwave Technol. 17, 1875-1883 (1999).
[CrossRef]

H. Feng, R. F. Tavlykaev, and R. V. Ramaswamy, "Record-high reflectance in narrowband low-loss Bragg reflectors with Si-on-LiNbO3 waveguides," Electron. Lett. 35, 1636-1637 (1999).
[CrossRef]

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

N. Shaw, W. J. Stewart, J. Heaton, and D. R. Wight, "Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators," Electron. Lett. 35, 1557-1558 (1999).
[CrossRef]

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

1997 (1)

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

1991 (1)

S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
[CrossRef]

1990 (1)

1982 (1)

G. M. McWright, T. E. Batchman, and M. S. Stanziano, "Measurement and analysis of periodic coupling in silicon-clad planar waveguides," IEEE J. Quantum Electron. QE-18, 1765-1771 (1982).
[CrossRef]

1974 (1)

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Batchman, T. E.

R. F. Carson and T. E. Batchman, "Multimode phenomena in semiconductor-clad dielectric optical waveguide structure," Appl. Opt. 29, 2769-2780 (1990).
[CrossRef] [PubMed]

G. M. McWright, T. E. Batchman, and M. S. Stanziano, "Measurement and analysis of periodic coupling in silicon-clad planar waveguides," IEEE J. Quantum Electron. QE-18, 1765-1771 (1982).
[CrossRef]

Benkelfat, B.-E.

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, "Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange," IEEE Photonics Technol. Lett. 14, 1430-1433 (2002).
[CrossRef]

Carenco, A.

S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
[CrossRef]

Carrc, M.

S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
[CrossRef]

Carson, R. F.

Cheng, A.

Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 37, 312-314 (2001).
[CrossRef]

Chu, P. L.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

Das, B. K.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

Ding, Y. J.

Feise, G.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Feng, H.

H. Feng, R. F. Tavlykaev, and R. V. Ramaswamy, "Record-high reflectance in narrowband low-loss Bragg reflectors with Si-on-LiNbO3 waveguides," Electron. Lett. 35, 1636-1637 (1999).
[CrossRef]

Ferrière, R.

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, "Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange," IEEE Photonics Technol. Lett. 14, 1430-1433 (2002).
[CrossRef]

Flanders, D. C.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Fouchet, S.

S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
[CrossRef]

Gao, Y.

S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
[CrossRef]

Heaton, J.

N. Shaw, W. J. Stewart, J. Heaton, and D. R. Wight, "Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators," Electron. Lett. 35, 1557-1558 (1999).
[CrossRef]

Herrmann, H.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Hinz, S.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Hu, H.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

Huet, F.

S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
[CrossRef]

Kang, J. U.

Khurgin, J. B.

Kim, J.

Kogelnik, H.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Ladan, F. R.

S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
[CrossRef]

Li, G.

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

McWright, G. M.

G. M. McWright, T. E. Batchman, and M. S. Stanziano, "Measurement and analysis of periodic coupling in silicon-clad planar waveguides," IEEE J. Quantum Electron. QE-18, 1765-1771 (1982).
[CrossRef]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Mirvoda, V.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Mollier, P.

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, "Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange," IEEE Photonics Technol. Lett. 14, 1430-1433 (2002).
[CrossRef]

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

Noé, R.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Pissadakis, S.

S. Pissadakis, L. Reekie, M. N. Zervas, and J. S. Wilkinson, "Grating in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining," Appl. Phys. Lett. 78, 694-696 (2001).
[CrossRef]

Ramaswamy, R. V.

H. Feng, R. F. Tavlykaev, and R. V. Ramaswamy, "Record-high reflectance in narrowband low-loss Bragg reflectors with Si-on-LiNbO3 waveguides," Electron. Lett. 35, 1636-1637 (1999).
[CrossRef]

Reekie, L.

S. Pissadakis, L. Reekie, M. N. Zervas, and J. S. Wilkinson, "Grating in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining," Appl. Phys. Lett. 78, 694-696 (2001).
[CrossRef]

Ricken, R.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Sandel, D.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Schmidt, R. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Shank, C. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

Shaw, N.

N. Shaw, W. J. Stewart, J. Heaton, and D. R. Wight, "Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators," Electron. Lett. 35, 1557-1558 (1999).
[CrossRef]

Sidorin, Y.

Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 37, 312-314 (2001).
[CrossRef]

Sohler, W.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Stanziano, M. S.

G. M. McWright, T. E. Batchman, and M. S. Stanziano, "Measurement and analysis of periodic coupling in silicon-clad planar waveguides," IEEE J. Quantum Electron. QE-18, 1765-1771 (1982).
[CrossRef]

Stewart, W. J.

N. Shaw, W. J. Stewart, J. Heaton, and D. R. Wight, "Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators," Electron. Lett. 35, 1557-1558 (1999).
[CrossRef]

Suche, H.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Tavlykaev, R. F.

H. Feng, R. F. Tavlykaev, and R. V. Ramaswamy, "Record-high reflectance in narrowband low-loss Bragg reflectors with Si-on-LiNbO3 waveguides," Electron. Lett. 35, 1636-1637 (1999).
[CrossRef]

Taylor, H. F.

Wacogne, B.

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, "Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange," IEEE Photonics Technol. Lett. 14, 1430-1433 (2002).
[CrossRef]

Wehrmann, F.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Wessel, R.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Wight, D. R.

N. Shaw, W. J. Stewart, J. Heaton, and D. R. Wight, "Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators," Electron. Lett. 35, 1557-1558 (1999).
[CrossRef]

Wilkinson, J. S.

S. Pissadakis, L. Reekie, M. N. Zervas, and J. S. Wilkinson, "Grating in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining," Appl. Phys. Lett. 78, 694-696 (2001).
[CrossRef]

Winick, K. A.

Wu, B.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

Xiong, Z.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

Yoshida-Dierolf, M.

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

Zervas, M. N.

S. Pissadakis, L. Reekie, M. N. Zervas, and J. S. Wilkinson, "Grating in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining," Appl. Phys. Lett. 78, 694-696 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974).
[CrossRef]

S. Pissadakis, L. Reekie, M. N. Zervas, and J. S. Wilkinson, "Grating in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining," Appl. Phys. Lett. 78, 694-696 (2001).
[CrossRef]

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991).
[CrossRef]

Electron. Lett. (4)

H. Feng, R. F. Tavlykaev, and R. V. Ramaswamy, "Record-high reflectance in narrowband low-loss Bragg reflectors with Si-on-LiNbO3 waveguides," Electron. Lett. 35, 1636-1637 (1999).
[CrossRef]

Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 37, 312-314 (2001).
[CrossRef]

S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999).
[CrossRef]

N. Shaw, W. J. Stewart, J. Heaton, and D. R. Wight, "Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators," Electron. Lett. 35, 1557-1558 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. M. McWright, T. E. Batchman, and M. S. Stanziano, "Measurement and analysis of periodic coupling in silicon-clad planar waveguides," IEEE J. Quantum Electron. QE-18, 1765-1771 (1982).
[CrossRef]

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, "Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange," IEEE Photonics Technol. Lett. 14, 1430-1433 (2002).
[CrossRef]

J. Lightwave Technol. (2)

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

H. F. Taylor, "Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation," J. Lightwave Technol. 17, 1875-1883 (1999).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

Other (1)

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the structure.

Fig. 2
Fig. 2

Scanning electron micrograph of gratings etched by RIE-ICP for 20 s in a 105 nm thick Si overlay film.

Fig. 3
Fig. 3

Broadband transmittance spectrum for TE input polarization from a Ti diffused waveguide with a 105 nm thick Si overlay and gratings etched for 20 s.

Fig. 4
Fig. 4

Model calculations for the variation of κL and transmission dip assuming no loss (α = 0).

Fig. 5
Fig. 5

Model calculations for the variation of αL and spectral width between minima for the reflectance peak with κL as a parameter.

Fig. 6
Fig. 6

Spectra obtained for a 16 s etched grating sample (solid curve, experimental; dashed curve, model). (a) Transmission, (b) reflectance.

Fig. 7
Fig. 7

Spectra obtained for an 18 s etched grating sample (solid curve, experimental; dashed curve, model). (a) Transmission, (b) reflectance.

Fig. 8
Fig. 8

Spectra obtained for a 20 s etched grating sample (solid curve, experimental; dashed curve, model). (a) Transmission, (b) reflectance.

Tables (2)

Tables Icon

Table 1 Measured Transmission Dip, Spectral Width of the Reflectance Peak, and Insertion Loss for Gratings Produced with Different Etching Durations

Tables Icon

Table 2 Calculated Values of Attenuation α and Coupling κ Coefficients for Gratings Produced with Different Etching Durations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A d y = κ B exp ( i Δ y ) α A ,
d B d y = κ A exp ( i Δ y ) + α B .
δ A r = [ κ B r cos ( Δ y ) κ B i sin ( Δ y ) α A r ] δ y ,
δ A i = [ κ B i cos ( Δ y ) + κ B r sin ( Δ y ) α A i ] δ y ,
δ B r = [ κ A r cos ( Δ y ) + κ A i sin ( Δ y ) + α B r ] δ y ,
δ B i = [ κ A i cos ( Δ y ) κ A r sin ( Δ y ) + α B i ] δ y .

Metrics