Abstract

Bragg grating reflectors etched in amorphous silicon overlay films have been integrated with Ti:LiNbO3 optical waveguides to obtain a narrow (0.05  nm) reflectance spectrum with a >20  dB dip in the transmittance spectrum. These results were realized at a wavelength of 1542 .7   nm for TE polarization on an x-cut, y-propagating substrate with gratings etched to a depth of 93   nm in a 105   nm thick silicon film over a length of 12 .5   mm. The reflectance in the channel waveguides is found to be strongly dependent on the depth of the etched grating. The effect of the Bragg waveguide loss factor on the transmittance and reflectance spectra is investigated by using a model for contradirectional coupling that includes an attenuation coefficient. The values for coupling constants κ and amplitude attenuation constants α of samples etched for different time durations to control the grating depths are obtained from the model through the use of the depth of the dips in the transmittance spectra and the spectral widths of the reflectance peaks. It is concluded that the corrugated Si overlay film increases the insertion loss by 2 .7   dB, and the loss is not significantly affected by the grating depth.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription