Abstract

A detailed study using both analytical and numerical calculations of direct and heterodyne differential absorption lidar (DIAL) techniques is conducted to complement previous studies. The DIAL measurement errors depend on key experimental parameters, some of which can be adjusted to minimize the statistical error. Accordingly, the pertinent criteria on optical thickness, the number of photons emitted at the on and off wavelengths, are discussed to reduce the relative error on the total column content or range-resolved measurements that rely on either hard target or atmospheric backscatter returns. In direct detection, the optimal optical thickness decreases from 1.3 to 0.8 when the background increases while the on-line-to-off-line optimal energy ratio decreases from 3.6 to 2.7. In heterodyne detection, the minimum error is obtained for an optical thickness of 1.2 and an energy ratio of 4.3.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2concentration from a satellite

Shumpei Kameyama, Masaharu Imaki, Yoshihito Hirano, Shinichi Ueno, Shuji Kawakami, Daisuke Sakaizawa, Toshiyoshi Kimura, and Masakatsu Nakajima
Appl. Opt. 50(14) 2055-2068 (2011)

Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer

Fabien Gibert, Pierre H. Flamant, Didier Bruneau, and Claude Loth
Appl. Opt. 45(18) 4448-4458 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription