Abstract

What we believe to be the first use of a single-layer liquid-crystal modulator array for spectral phase pulse shaping that operates independently of input polarization is reported. Polarization insensitivity is essential to optical-fiber-based applications such as dispersion compensation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  2. R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
    [CrossRef] [PubMed]
  3. C.-C. Chang, H. P. Sardesai, and A. M. Weiner, "Dispersion-free fiber transmission for femtosecond pulses using a dispersion-compensating fiber and a programmable pulse shaper," Opt. Lett. 23, 283-285 (1998).
    [CrossRef]
  4. Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, "Fully dispersion compensated ∼500 fs pulse transmission over 50 km single mode fiber," Opt. Lett. 30, 1449-1451 (2005).
    [CrossRef] [PubMed]
  5. H. Takenouchi, T. Goh, and T. Ishii, "8 THz bandwidth dispersion-slope compensator module for multiband 40 Gbit/s WDM transmission systems using an AWG and spatial phase filter," Electron. Lett. 37, 777-778 (2001).
    [CrossRef]
  6. T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
    [CrossRef]
  7. T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
    [CrossRef]
  8. E. Zeek, R. Bartels, M. Murnane, H. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25, 587-589 (2000).
    [CrossRef]
  9. R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express 11, 1764-1769 (2003).
    [CrossRef]
  10. A. M. Weiner, "System of method for programmable polarization-independent phase compensation of optical signals," U.S. patent 6,879,426 (12 April 2005).
  11. J. X. Tull, M. A. Dugan, and W. S. Warren, "High Resolution, ultrafast laser pulse shaping and its applications," Adv. Magn. Opt. Reson. 20, 1-56 (1997).
    [CrossRef]
  12. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  13. M. M. Wefers and K. A. Nelson, "Generation of high-fidelity programmable ultrafast optical waveforms," Opt. Lett. 20, 1047-1049 (1995).
    [CrossRef] [PubMed]
  14. T. Brixner and G. Gerber, "Femtosecond polarization pulse shaping," Opt. Lett. 26, 557-559 (2001).
    [CrossRef]
  15. K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fibre ring laser," Electron. Lett. 28, 2226-2228 (1992).
    [CrossRef]
  16. S. X. Wang and A. M. Weiner, "Fast wavelength-parallel polarimeter for broadband optical networks," Opt. Lett. 29, 923-925 (2004).
    [CrossRef] [PubMed]
  17. J. P. Heritage, A. M. Weiner, and R. N. Thurston, "Picosecond pulse shaping by spectral phase and amplitude manipulation," Opt. Lett. 10, 609-611 (1985).
    [CrossRef] [PubMed]
  18. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563-1572 (1988).
    [CrossRef]

2005 (1)

2004 (1)

2003 (2)

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express 11, 1764-1769 (2003).
[CrossRef]

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

2001 (3)

H. Takenouchi, T. Goh, and T. Ishii, "8 THz bandwidth dispersion-slope compensator module for multiband 40 Gbit/s WDM transmission systems using an AWG and spatial phase filter," Electron. Lett. 37, 777-778 (2001).
[CrossRef]

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

T. Brixner and G. Gerber, "Femtosecond polarization pulse shaping," Opt. Lett. 26, 557-559 (2001).
[CrossRef]

2000 (2)

1999 (1)

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

1998 (1)

1997 (1)

J. X. Tull, M. A. Dugan, and W. S. Warren, "High Resolution, ultrafast laser pulse shaping and its applications," Adv. Magn. Opt. Reson. 20, 1-56 (1997).
[CrossRef]

1995 (1)

1992 (2)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fibre ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

1988 (1)

1985 (1)

Backus, S.

Bartels, R.

Brixner, T.

T. Brixner and G. Gerber, "Femtosecond polarization pulse shaping," Opt. Lett. 26, 557-559 (2001).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

Chang, C.-C.

Dugan, M. A.

J. X. Tull, M. A. Dugan, and W. S. Warren, "High Resolution, ultrafast laser pulse shaping and its applications," Adv. Magn. Opt. Reson. 20, 1-56 (1997).
[CrossRef]

Gerber, G.

T. Brixner and G. Gerber, "Femtosecond polarization pulse shaping," Opt. Lett. 26, 557-559 (2001).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

Goh, T.

H. Takenouchi, T. Goh, and T. Ishii, "8 THz bandwidth dispersion-slope compensator module for multiband 40 Gbit/s WDM transmission systems using an AWG and spatial phase filter," Electron. Lett. 37, 777-778 (2001).
[CrossRef]

Harumoto, M.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

Haus, H. A.

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fibre ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Heritage, J. P.

Ippen, E. P.

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fibre ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Ishii, T.

H. Takenouchi, T. Goh, and T. Ishii, "8 THz bandwidth dispersion-slope compensator module for multiband 40 Gbit/s WDM transmission systems using an AWG and spatial phase filter," Electron. Lett. 37, 777-778 (2001).
[CrossRef]

Iwashima, T.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

Jiang, Z.

Kanie, T.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

Kapteyn, H.

Katayama, M.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

Kirschner, E. M.

Leaird, D. E.

Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, "Fully dispersion compensated ∼500 fs pulse transmission over 50 km single mode fiber," Opt. Lett. 30, 1449-1451 (2005).
[CrossRef] [PubMed]

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express 11, 1764-1769 (2003).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Levis, R. J.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Menkir, G. M.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Murnane, M.

Nelson, K. A.

Nelson, R. D.

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express 11, 1764-1769 (2003).
[CrossRef]

Nishimura, M.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Rabitz, H.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Sano, T.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

Sardesai, H. P.

Shigehara, M.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

Strehle, M.

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

Suganuma, H.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

Takenouchi, H.

H. Takenouchi, T. Goh, and T. Ishii, "8 THz bandwidth dispersion-slope compensator module for multiband 40 Gbit/s WDM transmission systems using an AWG and spatial phase filter," Electron. Lett. 37, 777-778 (2001).
[CrossRef]

Tamura, K.

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fibre ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Thurston, R. N.

Tull, J. X.

J. X. Tull, M. A. Dugan, and W. S. Warren, "High Resolution, ultrafast laser pulse shaping and its applications," Adv. Magn. Opt. Reson. 20, 1-56 (1997).
[CrossRef]

Vdovin, G.

Wang, S. X.

Warren, W. S.

J. X. Tull, M. A. Dugan, and W. S. Warren, "High Resolution, ultrafast laser pulse shaping and its applications," Adv. Magn. Opt. Reson. 20, 1-56 (1997).
[CrossRef]

Wefers, M. M.

Weiner, A. M.

Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, "Fully dispersion compensated ∼500 fs pulse transmission over 50 km single mode fiber," Opt. Lett. 30, 1449-1451 (2005).
[CrossRef] [PubMed]

S. X. Wang and A. M. Weiner, "Fast wavelength-parallel polarimeter for broadband optical networks," Opt. Lett. 29, 923-925 (2004).
[CrossRef] [PubMed]

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express 11, 1764-1769 (2003).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

C.-C. Chang, H. P. Sardesai, and A. M. Weiner, "Dispersion-free fiber transmission for femtosecond pulses using a dispersion-compensating fiber and a programmable pulse shaper," Opt. Lett. 23, 283-285 (1998).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563-1572 (1988).
[CrossRef]

J. P. Heritage, A. M. Weiner, and R. N. Thurston, "Picosecond pulse shaping by spectral phase and amplitude manipulation," Opt. Lett. 10, 609-611 (1985).
[CrossRef] [PubMed]

A. M. Weiner, "System of method for programmable polarization-independent phase compensation of optical signals," U.S. patent 6,879,426 (12 April 2005).

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Yang, S.-D.

Zeek, E.

Adv. Magn. Opt. Reson. (1)

J. X. Tull, M. A. Dugan, and W. S. Warren, "High Resolution, ultrafast laser pulse shaping and its applications," Adv. Magn. Opt. Reson. 20, 1-56 (1997).
[CrossRef]

Appl. Phys. B (1)

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

Electron. Lett. (2)

H. Takenouchi, T. Goh, and T. Ishii, "8 THz bandwidth dispersion-slope compensator module for multiband 40 Gbit/s WDM transmission systems using an AWG and spatial phase filter," Electron. Lett. 37, 777-778 (2001).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fibre ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, "Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating," IEEE Photon. Technol. Lett. 15, 1109-1100 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express 11, 1764-1769 (2003).
[CrossRef]

Opt. Lett. (7)

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Science (1)

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Other (1)

A. M. Weiner, "System of method for programmable polarization-independent phase compensation of optical signals," U.S. patent 6,879,426 (12 April 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reflective Fourier-transform pulse shaper design. LCM, liquid-crystal modulator array; QWP, quarter-wave plate.

Fig. 2
Fig. 2

Autocorrelation of pulse emitted by the laser and initial cross correlation of shaper output pulse with the pulse shaper in a quiescent state (constant spectral phase).

Fig. 3
Fig. 3

Intensity cross correlation after spectral phase compensation for six different input polarizations. Correlation traces are essentially identical, confirming polarization independence.

Fig. 4
Fig. 4

Polarization states used to demonstrate polarization insensitivity.

Fig. 5
Fig. 5

Cross-correlation measurement of odd pulses for six different input polarizations. Pulse shapes are essentially identical, confirming polarization independence.

Fig. 6
Fig. 6

Dispersion-compensated cubic pulses for six different input polarizations. Pulse shapes are essentially identical, confirming polarization independence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J LCM = [ g x 0 0 g y ] [ exp ( j ζ x ) 0 0 exp ( j ζ y ( V ) ) ] [ 0 j j 0 ] × [ exp ( j ζ x ) 0 0 exp ( j ζ y ( V ) ) ] [ g x 0 0 g y ] .
J LCM = j g x g y exp { j [ ζ x + ζ y ( V ) ] } [ 0 1 1 0 ] .

Metrics