Abstract

We designed and demonstrated what we believe to be a novel sensor for simultaneous measurement of stress and temperature. A fiber Bragg grating is flatly adhered to the surface of a loop thin-wall section beam. The theoretical analyses and the experimental results show that both the central wavelength shift and the chirped bandwidth of the grating reflection spectrum have a linear relationship with the stress and the temperature, respectively, and the slopes of them are different. Therefore, the temperature and stress can be discriminated by interrogating the chirped fiber grating. Moreover, we also investigated the strain of the loop thin-wall section beam, and the results show that the strain is cosine proportional to the double positional angle.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  2. G. A. Ball and W. W. Morey, "Compression-tuned single-frequency Bragg grating filter laser," Opt. Lett. 19, 1979-1981 (1994).
    [CrossRef] [PubMed]
  3. W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linear fibre-grating-type sensor tuned by applying torsion stress," Electron. Lett. , 36, 1686-1688 (2000).
    [CrossRef]
  4. W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, "Temperature-independent FBG-type torsion sensor based on combinatorial beam," IEEE Photon. Technol. Lett. 14, 1154-1156 (2002).
    [CrossRef]
  5. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
    [CrossRef]
  6. S. Gupta, T. Mizunami, T. Yamao, and T. Shimomura, "Fiber Bragg grating cryogenic temperature sensors," Appl. Opt. 35, 5202-5205 (1996).
    [CrossRef] [PubMed]
  7. F. J. Arregui, R. O. Claus, K. L. Cooper, C. Fernández-Valdivielso, and I. R. Matías, "Optical fiber gas sensor based on self-assembled gratings," J. Lightwave Technol. 19, 1932-1937 (2001).
    [CrossRef]
  8. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
    [CrossRef]
  9. V. Bhatia, "Applications of long-period gratings to single and multi-parameter sensing," Opt. Express 4, 457-466 (1999).
    [CrossRef] [PubMed]
  10. X. Shu, Y. Liu, D. Zhao, B. Gwandu, F. Floreani, L. Zhang, and I. Bennion, "Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement," Opt. Lett. 27, 701-703 (2002).
    [CrossRef]
  11. Y. Yu, H. Tam, W. Chung, and M. S. Demokan, "Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature," Opt. Lett. 25, 1141-1143 (2000).
    [CrossRef]
  12. V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, "Simultaneous strain and temperature measurement with long-period gratings," Opt. Lett. 22, 648-650 (1997).
    [CrossRef] [PubMed]
  13. S. Fan, Mechanics of Materials (Higher Education Press, 2000), pp. 71-91 (in Chinese).

2002 (2)

2001 (1)

2000 (2)

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linear fibre-grating-type sensor tuned by applying torsion stress," Electron. Lett. , 36, 1686-1688 (2000).
[CrossRef]

Y. Yu, H. Tam, W. Chung, and M. S. Demokan, "Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature," Opt. Lett. 25, 1141-1143 (2000).
[CrossRef]

1999 (1)

1997 (3)

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, "Simultaneous strain and temperature measurement with long-period gratings," Opt. Lett. 22, 648-650 (1997).
[CrossRef] [PubMed]

1996 (2)

S. Gupta, T. Mizunami, T. Yamao, and T. Shimomura, "Fiber Bragg grating cryogenic temperature sensors," Appl. Opt. 35, 5202-5205 (1996).
[CrossRef] [PubMed]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

1994 (1)

Andres, M. V.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Arregui, F. J.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Ball, G. A.

Bennion, I.

Bhatia, V.

Campbell, D.

Chung, W.

Claus, R. O.

Cooper, K. L.

Cruz, J. L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Demokan, M. S.

Diez, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Dong, L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Dong, X.

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, "Temperature-independent FBG-type torsion sensor based on combinatorial beam," IEEE Photon. Technol. Lett. 14, 1154-1156 (2002).
[CrossRef]

Dong, X. Y.

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linear fibre-grating-type sensor tuned by applying torsion stress," Electron. Lett. , 36, 1686-1688 (2000).
[CrossRef]

Fan, S.

S. Fan, Mechanics of Materials (Higher Education Press, 2000), pp. 71-91 (in Chinese).

Feng, D. J.

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linear fibre-grating-type sensor tuned by applying torsion stress," Electron. Lett. , 36, 1686-1688 (2000).
[CrossRef]

Fernández-Valdivielso, C.

Floreani, F.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Gupta, S.

Gwandu, B.

Kai, G.

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, "Temperature-independent FBG-type torsion sensor based on combinatorial beam," IEEE Photon. Technol. Lett. 14, 1154-1156 (2002).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

LeBlance, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Liu, Y.

Matías, I. R.

Mizunami, T.

Morey, W. W.

Ortega, B.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Qin, Z. X.

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linear fibre-grating-type sensor tuned by applying torsion stress," Electron. Lett. , 36, 1686-1688 (2000).
[CrossRef]

Segura, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Shimomura, T.

Shu, X.

Tam, H.

Vengsarkar, A. M.

V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, "Simultaneous strain and temperature measurement with long-period gratings," Opt. Lett. 22, 648-650 (1997).
[CrossRef] [PubMed]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Yamao, T.

Yu, Y.

Yuan, S.

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, "Temperature-independent FBG-type torsion sensor based on combinatorial beam," IEEE Photon. Technol. Lett. 14, 1154-1156 (2002).
[CrossRef]

Zhang, L.

Zhang, W.

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, "Temperature-independent FBG-type torsion sensor based on combinatorial beam," IEEE Photon. Technol. Lett. 14, 1154-1156 (2002).
[CrossRef]

Zhang, W. G.

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linear fibre-grating-type sensor tuned by applying torsion stress," Electron. Lett. , 36, 1686-1688 (2000).
[CrossRef]

Zhao, D.

Zhao, Q.

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, "Temperature-independent FBG-type torsion sensor based on combinatorial beam," IEEE Photon. Technol. Lett. 14, 1154-1156 (2002).
[CrossRef]

Zhao, Q. D.

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linear fibre-grating-type sensor tuned by applying torsion stress," Electron. Lett. , 36, 1686-1688 (2000).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linear fibre-grating-type sensor tuned by applying torsion stress," Electron. Lett. , 36, 1686-1688 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, "Temperature-independent FBG-type torsion sensor based on combinatorial beam," IEEE Photon. Technol. Lett. 14, 1154-1156 (2002).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

F. J. Arregui, R. O. Claus, K. L. Cooper, C. Fernández-Valdivielso, and I. R. Matías, "Optical fiber gas sensor based on self-assembled gratings," J. Lightwave Technol. 19, 1932-1937 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (1)

S. Fan, Mechanics of Materials (Higher Education Press, 2000), pp. 71-91 (in Chinese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the FBG sensor based on the LSB.

Fig. 2
Fig. 2

Setup of the experiment. BBS, broadband source; OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

Chirped bandwidth Δλ w of 3 dB and the central wavelength shift Δλ c versus the temperature T.

Fig. 4
Fig. 4

Reflection spectra of the FBG with F Q = 0.25, 4, and 7 kgN and θ = 45°.

Fig. 5
Fig. 5

Shifts of FBG reflection wavelength Δλ versus the force F Q .

Fig. 6
Fig. 6

Chirped bandwidths of 3 and 10 dB versus the force F Q .

Fig. 7
Fig. 7

(Color online) Measured temperature and force versus applied temperature. Temperature and force were measured simultaneously by the sensor as the applied temperature was increased and the applied force was varied. The rms deviation of the measured temperature from the applied temperature was 0.527 °C, while the rms deviation of the measured force from the applied force was 0.123 kgN.

Fig. 8
Fig. 8

Shift of the central wavelength versus the position of the FBG.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ = 2 F Q R 2 cos 2 θ I z ,
I z = π 64 [ ( R + t 2 ) 4 ( R t 2 ) 4 ]
γ = 2 F Q R 2 cos 2 θ G I z .
Δ λ λ 0 = a k ε ,
Δ λ = a k λ 0 2 F Q R 2 cos 2 θ G I z .
Δ λ w = a k λ 0 2 F Q R 2 | cos 2 θ 1 cos 2 θ 2 | G I z ,
[ Δ λ w Δ λ c ] = [ a 11 0 a 21 a 22 ] [ Δ τ Δ T ] ,
[ a 11 0 a 21 a 22 ]

Metrics