Abstract

We have investigated the temperature stability of the dichroic atomic vapor laser lock laser frequency lock method. We find that, in general, the lock exhibits significant temperature sensitivity, leading to laser frequency drifts as large as tens of MHz∕K. However, for certain configurations of the optical elements of the system, this temperature dependence is reduced to below 1  MHz/K. These temperature-independent points can be found across a broad range of frequencies. We present a numerical model that reproduces the general behavior of the system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994).
    [CrossRef]
  2. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295-3298 (1998).
    [CrossRef]
  3. M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, "Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect," J. Mod. Opt. 47, 1933-1940 (2000).
    [CrossRef]
  4. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
  5. K. R. Overstreet, J. Franklin, and J. P. Shaffer, "Zeeman effect spectroscopically locked Cs diode laser system for atomic physics," Rev. Sci. Instrum. 75, 4749-4753 (2004).
    [CrossRef]
  6. D. J. Gauthier, Duke University, Durham, N.C. 27708 (private communication).
  7. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996).
  8. S. Park, H. Lee, T. Kwon, and H. Cho, "Dispersion-like signals in velocity-selective saturated-absorption spectroscopy," Opt. Commun. 192, 49-55 (2001).
    [CrossRef]
  9. C. Sukenik, H. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
    [CrossRef]
  10. N. Robins, B. Slagmolen, D. Shaddock, J. Close, and M. Gray, "Interferometric, modulation-free laser stabilization," Opt. Lett. 27, 1905-1907 (2002).
    [CrossRef]
  11. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75, 613-619 (2002).
    [CrossRef]
  12. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).
  13. V. Yashchuk, D. Budker, and J. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
    [CrossRef]
  14. F. G. Lether, "Constrained near-minimax rational approximations to Dawson's integral," Appl. Math. Comp. 88, 267-274 (1997).
    [CrossRef]

2004 (1)

K. R. Overstreet, J. Franklin, and J. P. Shaffer, "Zeeman effect spectroscopically locked Cs diode laser system for atomic physics," Rev. Sci. Instrum. 75, 4749-4753 (2004).
[CrossRef]

2003 (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).

2002 (3)

C. Sukenik, H. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

N. Robins, B. Slagmolen, D. Shaddock, J. Close, and M. Gray, "Interferometric, modulation-free laser stabilization," Opt. Lett. 27, 1905-1907 (2002).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

2001 (2)

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).

S. Park, H. Lee, T. Kwon, and H. Cho, "Dispersion-like signals in velocity-selective saturated-absorption spectroscopy," Opt. Commun. 192, 49-55 (2001).
[CrossRef]

2000 (2)

V. Yashchuk, D. Budker, and J. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, "Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect," J. Mod. Opt. 47, 1933-1940 (2000).
[CrossRef]

1998 (1)

1997 (1)

F. G. Lether, "Constrained near-minimax rational approximations to Dawson's integral," Appl. Math. Comp. 88, 267-274 (1997).
[CrossRef]

1996 (1)

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996).

1994 (1)

B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994).
[CrossRef]

Beverini, N.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).

Budker, D.

V. Yashchuk, D. Budker, and J. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

Busch, H.

C. Sukenik, H. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Cheron, B.

B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994).
[CrossRef]

Cho, H.

S. Park, H. Lee, T. Kwon, and H. Cho, "Dispersion-like signals in velocity-selective saturated-absorption spectroscopy," Opt. Commun. 192, 49-55 (2001).
[CrossRef]

Clifford, M. A.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, "Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect," J. Mod. Opt. 47, 1933-1940 (2000).
[CrossRef]

Close, J.

Conroy, R. S.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, "Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect," J. Mod. Opt. 47, 1933-1940 (2000).
[CrossRef]

Corwin, K. L.

Davis, J.

V. Yashchuk, D. Budker, and J. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996).

Dholakia, K.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, "Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect," J. Mod. Opt. 47, 1933-1940 (2000).
[CrossRef]

Epstein, R. J.

Fattori, M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).

Franklin, J.

K. R. Overstreet, J. Franklin, and J. P. Shaffer, "Zeeman effect spectroscopically locked Cs diode laser system for atomic physics," Rev. Sci. Instrum. 75, 4749-4753 (2004).
[CrossRef]

Gauthier, D. J.

D. J. Gauthier, Duke University, Durham, N.C. 27708 (private communication).

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Gilles, H.

B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994).
[CrossRef]

Gray, M.

Hamel, J.

B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994).
[CrossRef]

Hand, C. F.

Kwon, T.

S. Park, H. Lee, T. Kwon, and H. Cho, "Dispersion-like signals in velocity-selective saturated-absorption spectroscopy," Opt. Commun. 192, 49-55 (2001).
[CrossRef]

Lamporesi, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).

Lancaster, G. P. T.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, "Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect," J. Mod. Opt. 47, 1933-1940 (2000).
[CrossRef]

Lee, H.

S. Park, H. Lee, T. Kwon, and H. Cho, "Dispersion-like signals in velocity-selective saturated-absorption spectroscopy," Opt. Commun. 192, 49-55 (2001).
[CrossRef]

Lether, F. G.

F. G. Lether, "Constrained near-minimax rational approximations to Dawson's integral," Appl. Math. Comp. 88, 267-274 (1997).
[CrossRef]

Lu, Z.-T.

Maccioni, E.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).

Marsili, P.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).

Moreau, O.

B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994).
[CrossRef]

Overstreet, K. R.

K. R. Overstreet, J. Franklin, and J. P. Shaffer, "Zeeman effect spectroscopically locked Cs diode laser system for atomic physics," Rev. Sci. Instrum. 75, 4749-4753 (2004).
[CrossRef]

Park, S.

S. Park, H. Lee, T. Kwon, and H. Cho, "Dispersion-like signals in velocity-selective saturated-absorption spectroscopy," Opt. Commun. 192, 49-55 (2001).
[CrossRef]

Petelski, T.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).

Robins, N.

Ruffini, A.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).

Shaddock, D.

Shaffer, J. P.

K. R. Overstreet, J. Franklin, and J. P. Shaffer, "Zeeman effect spectroscopically locked Cs diode laser system for atomic physics," Rev. Sci. Instrum. 75, 4749-4753 (2004).
[CrossRef]

Shiddiq, M.

C. Sukenik, H. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Slagmolen, B.

Sorel, H.

B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994).
[CrossRef]

Sorrentino, F.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).

Stuhler, J.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).

Sukenik, C.

C. Sukenik, H. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Tino, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Wieman, C. E.

Yashchuk, V.

V. Yashchuk, D. Budker, and J. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Appl. Math. Comp. (1)

F. G. Lether, "Constrained near-minimax rational approximations to Dawson's integral," Appl. Math. Comp. 88, 267-274 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Eur. Phys. J. D (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).

J. Mod. Opt. (1)

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, "Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect," J. Mod. Opt. 47, 1933-1940 (2000).
[CrossRef]

J. Phys. III (1)

B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994).
[CrossRef]

Opt. Commun. (2)

S. Park, H. Lee, T. Kwon, and H. Cho, "Dispersion-like signals in velocity-selective saturated-absorption spectroscopy," Opt. Commun. 192, 49-55 (2001).
[CrossRef]

C. Sukenik, H. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

K. R. Overstreet, J. Franklin, and J. P. Shaffer, "Zeeman effect spectroscopically locked Cs diode laser system for atomic physics," Rev. Sci. Instrum. 75, 4749-4753 (2004).
[CrossRef]

V. Yashchuk, D. Budker, and J. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

Other (2)

D. J. Gauthier, Duke University, Durham, N.C. 27708 (private communication).

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

DAVLL traces. The lower solid curve shows the experimental error signal as a function of frequency for an input polarization angle of θ = 90° and a wave-plate angle of ϕ = 134°. The frequency scale is zero at the F = 2 ↔ F′ = 3 resonance, as measured using the saturated absorption trace shown by the upper curve. The saturated absorption features are labeled according to excited state, so that 3 marks the F = 2 ↔ F′ = 3 transition, and 2–3 marks the crossover between F = 2 ↔ F′ = 2 and F = 2 ↔ F′ = 3 transitions. The dashed curve is the model prediction. The amplitude of the model is adjusted to match the data, and the wave-plate retardance in the model is set to λ∕1.62 to compensate for the retardance of the cell windows, as discussed in the text. For both the model and the data, the optical attenuation was adjusted to make the signal zero far from resonance.

Fig. 2
Fig. 2

Temperature sensitivity of DAVLL error signal. The solid traces were measured at a temperature of 26 °C and the dashed traces at 20 °C, for the same polarization settings as in Fig. 1. Two traces are shown at each temperature.

Fig. 3
Fig. 3

Temperature sensitivity of DAVLL lock. Using scans such as Fig. 2, the sensitivity of the laser lock frequency ν0 to temperature T is derived, as described in the text. The temperature sensitivity diverges at the extrema of the error signal curve, here at approximately −400 MHz and +150 MHz. It is not possible anyway to lock the laser near these points because the error signal slope is too small.

Fig. 4
Fig. 4

Location of TIPs. The data points indicate frequencies where the DAVLL is measured to have zero temperature sensitivity, plotted as a function of wave-plate angle ϕ. The input polarizer angle θ was held at 90° and the optical attenuation was adjusted to give zero error signal off resonance. The solid curves show the location of TIPs predicted by the model.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

V in = [ cos θ sin θ ] .
M cell = [ 1 1 i i ] [ t + 0 0 t ] [ 1 i 1 i ] ,
M λ / 4 = [ cos ϕ sin ϕ sin ϕ cos ϕ ] [ 1 0 0 e i α ] [ cos ϕ sin ϕ sin ϕ cos ϕ ] ,
V out = M λ / 4 M cell V i n [ H V ]
t = exp ( A 2 + i β ) ,
A = j k A j k ,
β = j k β j k .
A j k ( ν ) = π 2 Γ w a j k exp [ ( ν ν j k w ) 2 ] ,
β j k ( ν ) = π 2 a j k F ( ν ν j k w ) ,
Δ ν 0 Δ T Δ S Δ T 1 d S / d ν ,

Metrics