Abstract

We have measured the topography of a holographic ion-etched spherical blazed grating and three of its replicas using an atomic force microscope. The master grating had a roughness of less than 5Å  rms, a blaze angle of 2.5°, and an antiblaze angle of 3.3°. Thus the groove profile was more triangular than sawtooth. We find that the replication process did not significantly change the master grating. Moreover, we find no significant difference in roughness, blaze angle, or antiblaze angle between the master and its replicas before or after multilayer coating. However, bumps were observed on the gratings after coating, the cause of which is not understood. Although widespread, they occupy a relatively small fraction of the total area.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Vidal, P. Vincent, P. Dhez, M. Neviere, “Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics,” in Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE 563, 142–149 (1985).
  2. K.-H. Hellwege, “Über rasterförmige Reflexionsgitter,” Z. Phys. 106, 588–596 (1937).
    [CrossRef]
  3. K.-H. Hellwege, “Über rasterförmige Reflexionsgitter, Nachtrag,” Z. Phys. 111, 495–497 (1939).
    [CrossRef]
  4. R. G. Cruddace, T. W. Barbee, J. C. Rife, W. R. Hunter, “Measurements of the normal-incidence x-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000-l∕mm grating,” Phys. Scr. 41, 396–399 (1990).
    [CrossRef]
  5. M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
    [CrossRef] [PubMed]
  6. J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995).
    [CrossRef] [PubMed]
  7. M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, W. R. Hunter, “Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0-nm wavelength region,” Opt. Lett. 22, 834–836 (1997).
    [CrossRef] [PubMed]
  8. J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
    [CrossRef]
  9. M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
    [CrossRef] [PubMed]
  10. J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo∕Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
    [CrossRef] [PubMed]
  11. J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600-line∕mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
    [CrossRef] [PubMed]
  12. W. R. Hunter, J. F. Seely, M. P. Kowalski, J. C. Rife, T. W. Barbee, “Grazing-incidence efficiencies in the 24–42-Å wavelength region of replicas of the Skylab 3600-line∕mm concave grating with multilayer and gold coatings,” Appl. Opt. 36, 6411–6415 (1997).
    [CrossRef]
  13. M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
    [CrossRef]
  14. M. P. Kowalski, T. W. Barbee, W. R. Hunter, “Replication of a holographic ion-etched spherical blazed grating for use at extreme-ultraviolet wavelengths: efficiency,” Appl. Opt. 45, 322–334 (2006).
    [CrossRef] [PubMed]
  15. W. R. Hunter, M. P. Kowalski, J. C. Rife, R. G. Cruddace, “Investigation of the properties of an ion-etched plane laminar holographic grating,” Appl. Opt. 40, 6157–6165 (2001).
    [CrossRef]
  16. J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).
    [CrossRef]
  17. C. Montcalm, S. Bajt, J. F. Seely, “MoRu-Be multilayer-coated grating with 10.4% normal-incidence efficiency near the 11.4-nm wavelength,” Opt. Lett. 26, 125–127 (2001).
    [CrossRef]
  18. J. F. Seely, C. Montcalm, S. Baker, S. Bajt, “High-efficiency MoRu∕Be multilayer coated gratings operating near normal incidence in the 11.1–12.0 nm wavelength range,” Appl. Opt. 40, 5565–5574 (2001).
    [CrossRef]
  19. D. Content, “Diffraction grating groove analysis used to predict efficiency and scatter performance,” in Gradient Index, Miniature, and Diffractive Optical Systems, A. D. Kathman, ed., Proc. SPIE 3378, 19–30 (1999).
    [CrossRef]
  20. D. Content, P. Arsenovic, I. Kuznetsov, T. Hadjimichael, “Grating groove metrology and efficiency predictions from the soft x-ray to the far infrared,” in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, eds., Proc. SPIE 4485, 405–416 (2002).
    [CrossRef]
  21. “TopoMetrix AccurexTM∕ExplorerTM Technical Briefs,” Rep. 85-10235 rev. A (TopoMetrix Corporation, 1996).
  22. K. F. Heidemann, Carl Zeiss Laser Optics GmbH (personal communication, 2002).

2006 (1)

2002 (2)

D. Content, P. Arsenovic, I. Kuznetsov, T. Hadjimichael, “Grating groove metrology and efficiency predictions from the soft x-ray to the far infrared,” in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, eds., Proc. SPIE 4485, 405–416 (2002).
[CrossRef]

K. F. Heidemann, Carl Zeiss Laser Optics GmbH (personal communication, 2002).

2001 (3)

1999 (2)

D. Content, “Diffraction grating groove analysis used to predict efficiency and scatter performance,” in Gradient Index, Miniature, and Diffractive Optical Systems, A. D. Kathman, ed., Proc. SPIE 3378, 19–30 (1999).
[CrossRef]

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).
[CrossRef]

1997 (4)

1995 (3)

1993 (2)

1990 (1)

R. G. Cruddace, T. W. Barbee, J. C. Rife, W. R. Hunter, “Measurements of the normal-incidence x-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000-l∕mm grating,” Phys. Scr. 41, 396–399 (1990).
[CrossRef]

1985 (1)

B. Vidal, P. Vincent, P. Dhez, M. Neviere, “Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics,” in Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE 563, 142–149 (1985).

1939 (1)

K.-H. Hellwege, “Über rasterförmige Reflexionsgitter, Nachtrag,” Z. Phys. 111, 495–497 (1939).
[CrossRef]

1937 (1)

K.-H. Hellwege, “Über rasterförmige Reflexionsgitter,” Z. Phys. 106, 588–596 (1937).
[CrossRef]

Arsenovic, P.

D. Content, P. Arsenovic, I. Kuznetsov, T. Hadjimichael, “Grating groove metrology and efficiency predictions from the soft x-ray to the far infrared,” in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, eds., Proc. SPIE 4485, 405–416 (2002).
[CrossRef]

Bajt, S.

Baker, S.

Barbee, T. W.

M. P. Kowalski, T. W. Barbee, W. R. Hunter, “Replication of a holographic ion-etched spherical blazed grating for use at extreme-ultraviolet wavelengths: efficiency,” Appl. Opt. 45, 322–334 (2006).
[CrossRef] [PubMed]

W. R. Hunter, J. F. Seely, M. P. Kowalski, J. C. Rife, T. W. Barbee, “Grazing-incidence efficiencies in the 24–42-Å wavelength region of replicas of the Skylab 3600-line∕mm concave grating with multilayer and gold coatings,” Appl. Opt. 36, 6411–6415 (1997).
[CrossRef]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600-line∕mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo∕Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

R. G. Cruddace, T. W. Barbee, J. C. Rife, W. R. Hunter, “Measurements of the normal-incidence x-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000-l∕mm grating,” Phys. Scr. 41, 396–399 (1990).
[CrossRef]

Boyer, C. N.

Brown, C. M.

Content, D.

D. Content, P. Arsenovic, I. Kuznetsov, T. Hadjimichael, “Grating groove metrology and efficiency predictions from the soft x-ray to the far infrared,” in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, eds., Proc. SPIE 4485, 405–416 (2002).
[CrossRef]

D. Content, “Diffraction grating groove analysis used to predict efficiency and scatter performance,” in Gradient Index, Miniature, and Diffractive Optical Systems, A. D. Kathman, ed., Proc. SPIE 3378, 19–30 (1999).
[CrossRef]

Cruddace, R. G.

W. R. Hunter, M. P. Kowalski, J. C. Rife, R. G. Cruddace, “Investigation of the properties of an ion-etched plane laminar holographic grating,” Appl. Opt. 40, 6157–6165 (2001).
[CrossRef]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, W. R. Hunter, “Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0-nm wavelength region,” Opt. Lett. 22, 834–836 (1997).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600-line∕mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

R. G. Cruddace, T. W. Barbee, J. C. Rife, W. R. Hunter, “Measurements of the normal-incidence x-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000-l∕mm grating,” Phys. Scr. 41, 396–399 (1990).
[CrossRef]

Dhez, P.

B. Vidal, P. Vincent, P. Dhez, M. Neviere, “Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics,” in Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE 563, 142–149 (1985).

Eby, R.

Goray, L. I.

Hadjimichael, T.

D. Content, P. Arsenovic, I. Kuznetsov, T. Hadjimichael, “Grating groove metrology and efficiency predictions from the soft x-ray to the far infrared,” in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, eds., Proc. SPIE 4485, 405–416 (2002).
[CrossRef]

Heidemann, K. F.

Heinzmann, U.

Hellwege, K.-H.

K.-H. Hellwege, “Über rasterförmige Reflexionsgitter, Nachtrag,” Z. Phys. 111, 495–497 (1939).
[CrossRef]

K.-H. Hellwege, “Über rasterförmige Reflexionsgitter,” Z. Phys. 106, 588–596 (1937).
[CrossRef]

Holland, G. E.

Hunter, W. R.

M. P. Kowalski, T. W. Barbee, W. R. Hunter, “Replication of a holographic ion-etched spherical blazed grating for use at extreme-ultraviolet wavelengths: efficiency,” Appl. Opt. 45, 322–334 (2006).
[CrossRef] [PubMed]

W. R. Hunter, M. P. Kowalski, J. C. Rife, R. G. Cruddace, “Investigation of the properties of an ion-etched plane laminar holographic grating,” Appl. Opt. 40, 6157–6165 (2001).
[CrossRef]

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).
[CrossRef]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

W. R. Hunter, J. F. Seely, M. P. Kowalski, J. C. Rife, T. W. Barbee, “Grazing-incidence efficiencies in the 24–42-Å wavelength region of replicas of the Skylab 3600-line∕mm concave grating with multilayer and gold coatings,” Appl. Opt. 36, 6411–6415 (1997).
[CrossRef]

M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
[CrossRef]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, W. R. Hunter, “Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0-nm wavelength region,” Opt. Lett. 22, 834–836 (1997).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600-line∕mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo∕Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

R. G. Cruddace, T. W. Barbee, J. C. Rife, W. R. Hunter, “Measurements of the normal-incidence x-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000-l∕mm grating,” Phys. Scr. 41, 396–399 (1990).
[CrossRef]

Kleineberg, U.

Kowalski, M. P.

M. P. Kowalski, T. W. Barbee, W. R. Hunter, “Replication of a holographic ion-etched spherical blazed grating for use at extreme-ultraviolet wavelengths: efficiency,” Appl. Opt. 45, 322–334 (2006).
[CrossRef] [PubMed]

W. R. Hunter, M. P. Kowalski, J. C. Rife, R. G. Cruddace, “Investigation of the properties of an ion-etched plane laminar holographic grating,” Appl. Opt. 40, 6157–6165 (2001).
[CrossRef]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, W. R. Hunter, “Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0-nm wavelength region,” Opt. Lett. 22, 834–836 (1997).
[CrossRef] [PubMed]

W. R. Hunter, J. F. Seely, M. P. Kowalski, J. C. Rife, T. W. Barbee, “Grazing-incidence efficiencies in the 24–42-Å wavelength region of replicas of the Skylab 3600-line∕mm concave grating with multilayer and gold coatings,” Appl. Opt. 36, 6411–6415 (1997).
[CrossRef]

M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
[CrossRef]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600-line∕mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo∕Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

Kuznetsov, I.

D. Content, P. Arsenovic, I. Kuznetsov, T. Hadjimichael, “Grating groove metrology and efficiency predictions from the soft x-ray to the far infrared,” in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, eds., Proc. SPIE 4485, 405–416 (2002).
[CrossRef]

Menke, D.

Montcalm, C.

Neviere, M.

B. Vidal, P. Vincent, P. Dhez, M. Neviere, “Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics,” in Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE 563, 142–149 (1985).

Osterried, K.

Rife, J. C.

W. R. Hunter, M. P. Kowalski, J. C. Rife, R. G. Cruddace, “Investigation of the properties of an ion-etched plane laminar holographic grating,” Appl. Opt. 40, 6157–6165 (2001).
[CrossRef]

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).
[CrossRef]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, W. R. Hunter, “Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0-nm wavelength region,” Opt. Lett. 22, 834–836 (1997).
[CrossRef] [PubMed]

W. R. Hunter, J. F. Seely, M. P. Kowalski, J. C. Rife, T. W. Barbee, “Grazing-incidence efficiencies in the 24–42-Å wavelength region of replicas of the Skylab 3600-line∕mm concave grating with multilayer and gold coatings,” Appl. Opt. 36, 6411–6415 (1997).
[CrossRef]

M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
[CrossRef]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600-line∕mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo∕Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

R. G. Cruddace, T. W. Barbee, J. C. Rife, W. R. Hunter, “Measurements of the normal-incidence x-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000-l∕mm grating,” Phys. Scr. 41, 396–399 (1990).
[CrossRef]

Seely, J. F.

C. Montcalm, S. Bajt, J. F. Seely, “MoRu-Be multilayer-coated grating with 10.4% normal-incidence efficiency near the 11.4-nm wavelength,” Opt. Lett. 26, 125–127 (2001).
[CrossRef]

J. F. Seely, C. Montcalm, S. Baker, S. Bajt, “High-efficiency MoRu∕Be multilayer coated gratings operating near normal incidence in the 11.1–12.0 nm wavelength range,” Appl. Opt. 40, 5565–5574 (2001).
[CrossRef]

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).
[CrossRef]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, W. R. Hunter, “Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0-nm wavelength region,” Opt. Lett. 22, 834–836 (1997).
[CrossRef] [PubMed]

W. R. Hunter, J. F. Seely, M. P. Kowalski, J. C. Rife, T. W. Barbee, “Grazing-incidence efficiencies in the 24–42-Å wavelength region of replicas of the Skylab 3600-line∕mm concave grating with multilayer and gold coatings,” Appl. Opt. 36, 6411–6415 (1997).
[CrossRef]

M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
[CrossRef]

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600-line∕mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo∕Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

Stolt, K. G.

Vidal, B.

B. Vidal, P. Vincent, P. Dhez, M. Neviere, “Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics,” in Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE 563, 142–149 (1985).

Vincent, P.

B. Vidal, P. Vincent, P. Dhez, M. Neviere, “Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics,” in Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE 563, 142–149 (1985).

Appl. Opt. (12)

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo∕Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

W. R. Hunter, J. F. Seely, M. P. Kowalski, J. C. Rife, T. W. Barbee, “Grazing-incidence efficiencies in the 24–42-Å wavelength region of replicas of the Skylab 3600-line∕mm concave grating with multilayer and gold coatings,” Appl. Opt. 36, 6411–6415 (1997).
[CrossRef]

M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
[CrossRef]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600-line∕mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated ion-etched holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Eby, K. G. Stolt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Namioka mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).
[CrossRef]

J. F. Seely, C. Montcalm, S. Baker, S. Bajt, “High-efficiency MoRu∕Be multilayer coated gratings operating near normal incidence in the 11.1–12.0 nm wavelength range,” Appl. Opt. 40, 5565–5574 (2001).
[CrossRef]

W. R. Hunter, M. P. Kowalski, J. C. Rife, R. G. Cruddace, “Investigation of the properties of an ion-etched plane laminar holographic grating,” Appl. Opt. 40, 6157–6165 (2001).
[CrossRef]

M. P. Kowalski, T. W. Barbee, W. R. Hunter, “Replication of a holographic ion-etched spherical blazed grating for use at extreme-ultraviolet wavelengths: efficiency,” Appl. Opt. 45, 322–334 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Scr. (1)

R. G. Cruddace, T. W. Barbee, J. C. Rife, W. R. Hunter, “Measurements of the normal-incidence x-ray reflectance of a molybdenum-silicon multilayer deposited on a 2000-l∕mm grating,” Phys. Scr. 41, 396–399 (1990).
[CrossRef]

Proc. SPIE (3)

D. Content, “Diffraction grating groove analysis used to predict efficiency and scatter performance,” in Gradient Index, Miniature, and Diffractive Optical Systems, A. D. Kathman, ed., Proc. SPIE 3378, 19–30 (1999).
[CrossRef]

D. Content, P. Arsenovic, I. Kuznetsov, T. Hadjimichael, “Grating groove metrology and efficiency predictions from the soft x-ray to the far infrared,” in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, eds., Proc. SPIE 4485, 405–416 (2002).
[CrossRef]

B. Vidal, P. Vincent, P. Dhez, M. Neviere, “Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics,” in Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, G. F. Marshall, ed., Proc. SPIE 563, 142–149 (1985).

Z. Phys. (2)

K.-H. Hellwege, “Über rasterförmige Reflexionsgitter,” Z. Phys. 106, 588–596 (1937).
[CrossRef]

K.-H. Hellwege, “Über rasterförmige Reflexionsgitter, Nachtrag,” Z. Phys. 111, 495–497 (1939).
[CrossRef]

Other (2)

“TopoMetrix AccurexTM∕ExplorerTM Technical Briefs,” Rep. 85-10235 rev. A (TopoMetrix Corporation, 1996).

K. F. Heidemann, Carl Zeiss Laser Optics GmbH (personal communication, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Shaded AFM image of the master grating prior to replication. The vertical scale has been exaggerated to reveal the texture. One grating period is 0.4167 μm (2400 grooves∕mm).

Fig. 2
Fig. 2

Same as in Fig. 1 but for (a) the master grating after replication, (b) replica 1, (c) replica 2, (d) replica 3.

Fig. 3
Fig. 3

Same as in Fig. 2 but after multilayer coating for (a) the master grating, (b) replica 1, (c) replica 2.

Fig. 4
Fig. 4

Histogram of pixel heights for the image of replica 3 [Fig. 2(d)], which is representative. The histogram has bins 1.0 Å wide. The vertical limits define height limits to which the calculation of the local blaze angle histogram is restricted.

Fig. 5
Fig. 5

Histogram of local blaze angles using all pixel heights for (a) the master grating after replication [Fig. 2(a)], (b) the uncoated replica 3 [Fig. 2(d)], and (c) the multilayer-coated replica 1 [Fig. 3(b)]. The histograms have bins 0.1° wide.

Fig. 6
Fig. 6

Histogram of local blaze angles for the master grating prior to replication calculated using cuts in the height histogram. The histogram has bins 0.1° wide.

Fig. 7
Fig. 7

Same as in Fig. 6 but for (a) the master grating after replication, (b) replica 1, (c) replica 2, and (d) replica 3.

Fig. 8
Fig. 8

Same as in Fig. 7 but after multilayer coating for (a) the master grating, (b) replica 1, and (c) replica 2.

Fig. 9
Fig. 9

Gray-scale image of a standard bare holographic ion-etched laminar grating made with (a) a usable supertip and (b) an unusable supertip. The light areas are the lands.

Fig. 10
Fig. 10

PSD of an AFM image of the multilayer-coated master grating in the X direction (perpendicular to the grooves) and the Y direction (parallel to the grooves). The arrows indicate the frequency range (2–40 μm−1) over which the PSD was integrated to produce a value of roughness.

Fig. 11
Fig. 11

Histogram of pixel heights from a simulated image of a noiseless laminar grating with a groove depth of 40 Å and a land-to-groove ratio of 3. The histogram has bins 0.1 Å wide.

Fig. 12
Fig. 12

(a) Histogram of pixel heights from a simulated image of a laminar grating with a groove depth of 40 Å, a land-to-groove ratio of 1, and Poisson noise scaled to 5 Å roughness. The histogram has bins 1.0 Å wide. (b) Best-fit Gaussian model superimposed on the land (right-hand) maximum of (a).

Fig. 13
Fig. 13

Histogram of pixel heights from a simulated image of a laminar grating with a groove depth of 40 Å, a land-to-groove ratio of 1, and Poisson noise scaled to 10 Å roughness. The histogram has bins 2.0 Å wide.

Fig. 14
Fig. 14

(a) Histogram of pixel heights from a simulated image of a triangular grating with a blaze angle of 2.7° and an antiblaze angle of 5°. The histogram has bins 2.0 Å wide. (b) Same as in (a) but with Poisson noise scaled to 5 Å roughness added. The histogram has bins 1.0 Å wide. The vertical lines define limits that are used to restrict the calculation of the histogram of local blaze angles to the displayed range in height.

Fig. 15
Fig. 15

(a) Histogram of local blaze angles derived from the noiseless simulation shown in Fig. 14(a) using a window three pixels in length. Histogram of local blaze angles derived from the simulation shown in Fig. 14(b) using a window of length (b) 3 pixels, (c) 5 pixels, (d) 8 pixels, and (e) 33 pixels. (f) The same as in (d) but with the calculation of local blaze angles restricted to pixels with heights in the range of 30–100 Å.

Fig. 16
Fig. 16

Average groove profile of the triangular grating simulation with noise scaled to 5 Å roughness. Only the first period is shown. The shaded area is the superposition of all rows of data in the image. The solid curve is the average over all rows, and the two dashed curves indicate the 1σ range.

Tables (6)

Tables Icon

Table 1 Measured Grating Roughness a

Tables Icon

Table 2 Calculated Average Groove Depths a

Tables Icon

Table 3 Fitted Mean and Standard Deviation of Blaze Angles a

Tables Icon

Table 4 Log of Atomic Force Microscope Parameter Values a

Tables Icon

Table 5 Best-Fit Mean of Height Histogram Maxima

Tables Icon

Table 6 Best-Fit Mean of Blaze Histogram Maxima a

Metrics