Abstract

Polarization characteristics of microarrays of silver nanowires embedded in an anodic alumina membrane are theoretically investigated. The microarrays mainly transmit the p-polarized wave, whereas they strongly attenuate the s-polarized wave in the near- and mid-infrared spectral range. We show that the sizes (e.g., diameter, spacing, and ratio of diameter to spacing) of the nanowires strongly affect the optical losses for the polarized waves. It is predicted that large extinction ratios and small insertion losses can be simultaneously achieved by an appropriate choice of the ratio and the diameter. An optimized design of a nanowire grid polarizer at near- and mid-infrared wavelengths is presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Bird and M. Parrish, "The wire grid as a near-infrared polarizer," J. Opt. Soc. Am. 50, 886-891 (1960).
    [CrossRef]
  2. J. B. Young, H. A. Graham, and E. W. Peterson, "Wire grid infrared polarizer," Appl. Opt. 4, 1023-1031 (1965).
    [CrossRef]
  3. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-µm-wavelength band," Opt. Lett. 22, 419-421 (1997).
    [CrossRef] [PubMed]
  4. J. Guo and D. Brady, "Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry," Appl. Opt. 39, 1486-1492 (2000).
    [CrossRef]
  5. K. Nielsch, F. Müller, A. P. Li, and U. Gösele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Adv. Mater. 12, 582-586 (2000).
    [CrossRef]
  6. M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodized alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
    [CrossRef]
  7. Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, "Silver nanowire array infrared polarizers," Nanotechnology 14, 20-24 (2003).
    [CrossRef]
  8. H. Hertz, Electric Waves (Macmillan, 1893), p. 177.
  9. H. duBois and H. Rubens, "Polarization of long-wave heat rays by means of a wire grating," Ann. Phys. 35, 243-276 (1911).
  10. M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
    [CrossRef]
  11. D. W. Lynch and W. R. Hunter, "Metals: comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 275-408.
  12. M. Saito and M. Miyagi, "Anisotropic optical loss and birefringence of anodized alumina film," J. Opt. Soc. Am. A 6, 1895-1900 (1989).
    [CrossRef]
  13. J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
    [CrossRef]
  14. A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
    [CrossRef] [PubMed]
  15. F. Gervais, "Aluminum oxide (Al2O3)," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991), pp. 761-775.
  16. H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
    [CrossRef] [PubMed]
  17. X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem. 11, 1732-1734 (2001).
    [CrossRef]
  18. H. Masuda, F. Hasegwa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution," J. Electrochem. Soc. 144, L127-L130 (1997).
    [CrossRef]
  19. P. M. Paulus, F. Luis, M. Kröll, G. Schmid, and L. J. de Jongh, "Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires," J. Magn. Magn. Mater. 224, 180-196 (2001).
    [CrossRef]
  20. F. Müller, A. D. Müller, M. Kröll, and G. Schmid, "Highly resolved electric force microscopy of metal-filled anodic alumina," Appl. Surf. Sci. 171, 125-129 (2001).
    [CrossRef]
  21. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
    [CrossRef]
  22. A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
    [CrossRef] [PubMed]
  23. M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
    [CrossRef]
  24. A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Appl. Phys. Lett. 79, 1039-1041 (2001).
    [CrossRef]
  25. D. Grujicic and B. Pesic, "Electrodeposition of copper: the nucleation mechanisms," Electrochim. Acta 47, 2901-2912 (2002).
    [CrossRef]
  26. J. C. Hulteen and C. R. Martin, "A general template-based method for the preparation of nanomaterials," J. Mater. Chem. 7, 1075-1087 (1997).
    [CrossRef]
  27. M. Born and E. Wolf, "Optics of metals," in Principles of Optics, 6th ed. (Pergamon, 1980), pp. 611-664.
  28. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), pp. 63-84.
  29. A. A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions (Springer, 2001), pp. 31-39.
  30. J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett. 30, 195-197 (2005).
    [CrossRef] [PubMed]
  31. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, "High extinction ratio in fiber polarizers based on 45° tilted fiber Bragg gratings," Opt. Lett. 30, 1285-1287 (2005).
    [CrossRef] [PubMed]

2005 (2)

2004 (2)

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
[CrossRef]

2003 (2)

Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, "Silver nanowire array infrared polarizers," Nanotechnology 14, 20-24 (2003).
[CrossRef]

A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
[CrossRef] [PubMed]

2002 (2)

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

D. Grujicic and B. Pesic, "Electrodeposition of copper: the nucleation mechanisms," Electrochim. Acta 47, 2901-2912 (2002).
[CrossRef]

2001 (6)

P. M. Paulus, F. Luis, M. Kröll, G. Schmid, and L. J. de Jongh, "Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires," J. Magn. Magn. Mater. 224, 180-196 (2001).
[CrossRef]

F. Müller, A. D. Müller, M. Kröll, and G. Schmid, "Highly resolved electric force microscopy of metal-filled anodic alumina," Appl. Surf. Sci. 171, 125-129 (2001).
[CrossRef]

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Appl. Phys. Lett. 79, 1039-1041 (2001).
[CrossRef]

A. A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions (Springer, 2001), pp. 31-39.

A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
[CrossRef] [PubMed]

X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem. 11, 1732-1734 (2001).
[CrossRef]

2000 (3)

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

J. Guo and D. Brady, "Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry," Appl. Opt. 39, 1486-1492 (2000).
[CrossRef]

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Adv. Mater. 12, 582-586 (2000).
[CrossRef]

1997 (3)

H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-µm-wavelength band," Opt. Lett. 22, 419-421 (1997).
[CrossRef] [PubMed]

H. Masuda, F. Hasegwa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution," J. Electrochem. Soc. 144, L127-L130 (1997).
[CrossRef]

J. C. Hulteen and C. R. Martin, "A general template-based method for the preparation of nanomaterials," J. Mater. Chem. 7, 1075-1087 (1997).
[CrossRef]

1995 (1)

H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

1991 (1)

F. Gervais, "Aluminum oxide (Al2O3)," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991), pp. 761-775.

1989 (2)

M. Saito and M. Miyagi, "Anisotropic optical loss and birefringence of anodized alumina film," J. Opt. Soc. Am. A 6, 1895-1900 (1989).
[CrossRef]

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodized alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

1985 (1)

D. W. Lynch and W. R. Hunter, "Metals: comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 275-408.

1980 (1)

M. Born and E. Wolf, "Optics of metals," in Principles of Optics, 6th ed. (Pergamon, 1980), pp. 611-664.

1965 (1)

1960 (1)

1957 (1)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), pp. 63-84.

1911 (1)

H. duBois and H. Rubens, "Polarization of long-wave heat rays by means of a wire grating," Ann. Phys. 35, 243-276 (1911).

1893 (1)

H. Hertz, Electric Waves (Macmillan, 1893), p. 177.

Bandyopadhyay, S.

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

Batallán, F.

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

Bennett, A. J.

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Appl. Phys. Lett. 79, 1039-1041 (2001).
[CrossRef]

Bennion, I.

Bird, G. R.

Born, M.

M. Born and E. Wolf, "Optics of metals," in Principles of Optics, 6th ed. (Pergamon, 1980), pp. 611-664.

Brady, D.

Brehm, G.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

Chang, M.

J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
[CrossRef]

Chen, L.

Chen, X.

Choi, J.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

de Jongh, L. J.

P. M. Paulus, F. Luis, M. Kröll, G. Schmid, and L. J. de Jongh, "Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires," J. Magn. Magn. Mater. 224, 180-196 (2001).
[CrossRef]

Deng, J.

Deng, X.

Doumuki, T.

duBois, H.

H. duBois and H. Rubens, "Polarization of long-wave heat rays by means of a wire grating," Ann. Phys. 35, 243-276 (1911).

Fang, Q.

Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, "Silver nanowire array infrared polarizers," Nanotechnology 14, 20-24 (2003).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

Gervais, F.

F. Gervais, "Aluminum oxide (Al2O3)," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991), pp. 761-775.

Gösele, U.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Adv. Mater. 12, 582-586 (2000).
[CrossRef]

Graham, H. A.

Gronsky, R.

A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
[CrossRef] [PubMed]

A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
[CrossRef] [PubMed]

Grujicic, D.

D. Grujicic and B. Pesic, "Electrodeposition of copper: the nucleation mechanisms," Electrochim. Acta 47, 2901-2912 (2002).
[CrossRef]

Guo, J.

Hasegwa, F.

H. Masuda, F. Hasegwa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution," J. Electrochem. Soc. 144, L127-L130 (1997).
[CrossRef]

Hernández-Vélez, M.

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

Hertz, H.

H. Hertz, Electric Waves (Macmillan, 1893), p. 177.

Hofmeister, H.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen and C. R. Martin, "A general template-based method for the preparation of nanomaterials," J. Mater. Chem. 7, 1075-1087 (1997).
[CrossRef]

Hunter, W. R.

D. W. Lynch and W. R. Hunter, "Metals: comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 275-408.

Jian, W.

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Appl. Phys. Lett. 79, 1039-1041 (2001).
[CrossRef]

Keyani, J.

A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
[CrossRef] [PubMed]

Kirby, R. D.

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

Kirihara, M.

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodized alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

Kokhanovsky, A. A.

A. A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions (Springer, 2001), pp. 31-39.

Kröll, M.

P. M. Paulus, F. Luis, M. Kröll, G. Schmid, and L. J. de Jongh, "Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires," J. Magn. Magn. Mater. 224, 180-196 (2001).
[CrossRef]

F. Müller, A. D. Müller, M. Kröll, and G. Schmid, "Highly resolved electric force microscopy of metal-filled anodic alumina," Appl. Surf. Sci. 171, 125-129 (2001).
[CrossRef]

Lei, Y.

X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem. 11, 1732-1734 (2001).
[CrossRef]

Li, A. P.

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Adv. Mater. 12, 582-586 (2000).
[CrossRef]

Li, J.

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Appl. Phys. Lett. 79, 1039-1041 (2001).
[CrossRef]

Liu, F.

Liu, Y.

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

Lu, Q. F.

J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
[CrossRef]

Luis, F.

P. M. Paulus, F. Luis, M. Kröll, G. Schmid, and L. J. de Jongh, "Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires," J. Magn. Magn. Mater. 224, 180-196 (2001).
[CrossRef]

Lynch, D. W.

D. W. Lynch and W. R. Hunter, "Metals: comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 275-408.

Mao, Y. Q.

X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem. 11, 1732-1734 (2001).
[CrossRef]

Martin, C. R.

J. C. Hulteen and C. R. Martin, "A general template-based method for the preparation of nanomaterials," J. Mater. Chem. 7, 1075-1087 (1997).
[CrossRef]

Martin-Gonzalez, M.

A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
[CrossRef] [PubMed]

A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
[CrossRef] [PubMed]

Masuda, H.

H. Masuda, F. Hasegwa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution," J. Electrochem. Soc. 144, L127-L130 (1997).
[CrossRef]

H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

Matsumoto, S.

Meng, G. W.

Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, "Silver nanowire array infrared polarizers," Nanotechnology 14, 20-24 (2003).
[CrossRef]

Menon, L.

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

Miyagi, M.

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodized alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

M. Saito and M. Miyagi, "Anisotropic optical loss and birefringence of anodized alumina film," J. Opt. Soc. Am. A 6, 1895-1900 (1989).
[CrossRef]

Müller, A. D.

F. Müller, A. D. Müller, M. Kröll, and G. Schmid, "Highly resolved electric force microscopy of metal-filled anodic alumina," Appl. Surf. Sci. 171, 125-129 (2001).
[CrossRef]

Müller, F.

F. Müller, A. D. Müller, M. Kröll, and G. Schmid, "Highly resolved electric force microscopy of metal-filled anodic alumina," Appl. Surf. Sci. 171, 125-129 (2001).
[CrossRef]

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Adv. Mater. 12, 582-586 (2000).
[CrossRef]

Navas, D.

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

Nielsch, K.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Adv. Mater. 12, 582-586 (2000).
[CrossRef]

Ono, S.

H. Masuda, F. Hasegwa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution," J. Electrochem. Soc. 144, L127-L130 (1997).
[CrossRef]

Pang, Y. T.

Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, "Silver nanowire array infrared polarizers," Nanotechnology 14, 20-24 (2003).
[CrossRef]

Parrish, M.

Paulus, P. M.

P. M. Paulus, F. Luis, M. Kröll, G. Schmid, and L. J. de Jongh, "Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires," J. Magn. Magn. Mater. 224, 180-196 (2001).
[CrossRef]

Pesic, B.

D. Grujicic and B. Pesic, "Electrodeposition of copper: the nucleation mechanisms," Electrochim. Acta 47, 2901-2912 (2002).
[CrossRef]

Peterson, E. W.

Pirota, K.

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

Prida, V. M.

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

Prieto, A. L.

A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
[CrossRef] [PubMed]

A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
[CrossRef] [PubMed]

Rubens, H.

H. duBois and H. Rubens, "Polarization of long-wave heat rays by means of a wire grating," Ann. Phys. 35, 243-276 (1911).

Saito, M.

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodized alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

M. Saito and M. Miyagi, "Anisotropic optical loss and birefringence of anodized alumina film," J. Opt. Soc. Am. A 6, 1895-1900 (1989).
[CrossRef]

Sander, M. S.

A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
[CrossRef] [PubMed]

Sands, T.

A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
[CrossRef] [PubMed]

A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
[CrossRef] [PubMed]

Sanz, R.

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

Sauer, G.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

Schmid, G.

F. Müller, A. D. Müller, M. Kröll, and G. Schmid, "Highly resolved electric force microscopy of metal-filled anodic alumina," Appl. Surf. Sci. 171, 125-129 (2001).
[CrossRef]

P. M. Paulus, F. Luis, M. Kröll, G. Schmid, and L. J. de Jongh, "Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires," J. Magn. Magn. Mater. 224, 180-196 (2001).
[CrossRef]

Schneider, S.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

Sciortino, P.

Sellmyer, D. J.

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

Simpson, G.

Stacy, A. M.

A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
[CrossRef] [PubMed]

A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
[CrossRef] [PubMed]

Tamada, H.

Taniguchi, T.

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodized alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), pp. 63-84.

Vázquez, M.

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

Velázquez, J.

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

Wang, J. J.

Wehrspohn, R. B.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, "Optics of metals," in Principles of Optics, 6th ed. (Pergamon, 1980), pp. 611-664.

Xu, J. M.

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Appl. Phys. Lett. 79, 1039-1041 (2001).
[CrossRef]

Yamaguchi, T.

Yan, Y. G.

J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
[CrossRef]

Ye, C. H.

J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
[CrossRef]

Yin, A. J.

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Appl. Phys. Lett. 79, 1039-1041 (2001).
[CrossRef]

Young, J. B.

Zeng, H.

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

Zhang, J. X.

J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
[CrossRef]

Zhang, L.

Zhang, L. D.

J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
[CrossRef]

Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, "Silver nanowire array infrared polarizers," Nanotechnology 14, 20-24 (2003).
[CrossRef]

X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem. 11, 1732-1734 (2001).
[CrossRef]

Zhang, W.

Zhang, X. Y.

X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem. 11, 1732-1734 (2001).
[CrossRef]

Zhao, L. X.

X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem. 11, 1732-1734 (2001).
[CrossRef]

Zheng, M.

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

Zhou, K.

Adv. Mater. (1)

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Adv. Mater. 12, 582-586 (2000).
[CrossRef]

Ann. Phys. (1)

H. duBois and H. Rubens, "Polarization of long-wave heat rays by means of a wire grating," Ann. Phys. 35, 243-276 (1911).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodized alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, "Fabrication of highly ordered metallic nanowire arrays by electrodeposition," Appl. Phys. Lett. 79, 1039-1041 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

F. Müller, A. D. Müller, M. Kröll, and G. Schmid, "Highly resolved electric force microscopy of metal-filled anodic alumina," Appl. Surf. Sci. 171, 125-129 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

J. X. Zhang, L. D. Zhang, C. H. Ye, M. Chang, Y. G. Yan, and Q. F. Lu, "Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane," Chem. Phys. Lett. 400, 158-162 (2004).
[CrossRef]

Electrochim. Acta (1)

D. Grujicic and B. Pesic, "Electrodeposition of copper: the nucleation mechanisms," Electrochim. Acta 47, 2901-2912 (2002).
[CrossRef]

J. Am. Chem. Soc. (2)

A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, "The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires," J. Am. Chem. Soc. 125, 2388-2389 (2003).
[CrossRef] [PubMed]

A. L. Prieto, M. S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, "Electrodeposition of ordered Bi2Te3 nanowire arrays," J. Am. Chem. Soc. 123, 7160-7161 (2001).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz, F. Batallán, and J. Velázquez, "Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter," J. Appl. Phys. 95, 6642-6644 (2004).
[CrossRef]

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays," J. Appl. Phys. 91, 3243-3247 (2002).
[CrossRef]

J. Electrochem. Soc. (1)

H. Masuda, F. Hasegwa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution," J. Electrochem. Soc. 144, L127-L130 (1997).
[CrossRef]

J. Magn. Magn. Mater. (1)

P. M. Paulus, F. Luis, M. Kröll, G. Schmid, and L. J. de Jongh, "Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires," J. Magn. Magn. Mater. 224, 180-196 (2001).
[CrossRef]

J. Mater. Chem. (2)

J. C. Hulteen and C. R. Martin, "A general template-based method for the preparation of nanomaterials," J. Mater. Chem. 7, 1075-1087 (1997).
[CrossRef]

X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem. 11, 1732-1734 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nanotechnology (1)

Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, "Silver nanowire array infrared polarizers," Nanotechnology 14, 20-24 (2003).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, "Magnetic properties of Ni nanowires in self-assembled arrays," Phys. Rev. B 62, 12282-12286 (2000).
[CrossRef]

Science (1)

H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

Other (6)

D. W. Lynch and W. R. Hunter, "Metals: comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 275-408.

F. Gervais, "Aluminum oxide (Al2O3)," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991), pp. 761-775.

H. Hertz, Electric Waves (Macmillan, 1893), p. 177.

M. Born and E. Wolf, "Optics of metals," in Principles of Optics, 6th ed. (Pergamon, 1980), pp. 611-664.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), pp. 63-84.

A. A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions (Springer, 2001), pp. 31-39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of a microarray of silver nanowires embedded in an AAM template.

Fig. 2
Fig. 2

Schematic drawing of the microarray with n rows of nanowires.

Fig. 3
Fig. 3

Optical loss spectra of a microarray of silver nanowires 90 nm in diameter and 130 nm in spacing: (a) theoretical results, (b) experimental data by Pang et al.[7]

Fig. 4
Fig. 4

Diameter dependence of optical loss spectra of silver nanowire microarrays for a fixed spacing of 100 nm .

Fig. 5
Fig. 5

Spacing dependence of optical loss spectra of silver nanowire microarrays for a fixed value of 50 nm in diameter.

Fig. 6
Fig. 6

Diameter evolution of optical loss spectra of the microarrays of silver nanowires when different ratios of 2 a to b are selected: (a) 2 a / b = 0.1 , (b) 2 a / b = 0.3 , (c) 2 a / b = 0.5 , and (d) 2 a / b = 0.7 .

Fig. 7
Fig. 7

Optical loss spectra with filling fraction of the nanochannels of the silver nanowire microarray at a telecommunication wavelength of 1550 nm .

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

t i f = 1 - ( 1 - i b η 1 i π k 1 a 2 ) - 1 - [ 1 + i k 1 b ( η 0 i - log 2 ) π ] - 1 ,
η 0 s = J 0 ( k 2 a ) - ( k 2 a ) J 0 ( k 2 a ) log ( π a / b ) ( k 1 a ) 2 J 0 ( k 2 a ) / 2 + ( k 2 a ) J 0 ( k 2 a ) ,
η 1 s = J 1 ( k 2 a ) + ( k 2 a ) J 1 ( k 2 a ) J 1 ( k 2 a ) - ( k 2 a ) J 1 ( k 2 a ) .
η 0 p = ( k 2 a ) J 0 ( k 2 a ) / ( k 1 a ) 2 - J 0 ( k 2 a ) log ( π a / b ) ( k 2 a ) J 0 ( k 2 a ) / 2 + J 0 ( k 2 a ) ,
η 1 p = ( k 2 a ) J 1 ( k 2 a ) + ( k 1 a ) 2 J 1 ( k 2 a ) ( k 2 a ) J 1 ( k 2 a ) - ( k 1 a ) 2 J 1 ( k 2 a ) ,
α i p = V p V f α i f ,
α i p = δα i f ,
α i f = 1 d log ( 1 T if n ) ,
T i f = t i f 2 ,
d = ( n - 1 ) ( 3 / 2 ) b .
L s = - 20 3 b δ ( log T s f - log T p f ) ,
L p = - 20 3 b δ log T p f .
R F = ( n s - n 1 ) 2 + k 2 ( n s + n 1 ) 2 + k 2 .
C sca = 8 3 π k 1 4 α 2 ,
α 2 = h 2 α x 2 + q 2 α y 2 + l 2 α z 2 ;
α j = V 4 π n 2 2 - 1 1 + L j ( n 2 2 - 1 ) ,
α j = V 4 π n 2 2 - n 1 2 n 1 2 + L j ( n 2 2 - n 1 2 ) .
C sca = 2 k 1 4 V 2 / 3 π .
L R m p δ l 2 ( a / λ ) 4 .
m p = 2 δ m A / ( 3 b 2 ) .
L R A 2 3 δ m δ l 2 ( 2 a / b ) 2 ( a 2 / λ 4 ) .
L R ( a 2 / λ 4 ) .

Metrics