Abstract

As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Brunner, "Impact of lens aberrations on optical lithography," IBM J. Res. Dev. 41, 57-67 (1997).
    [CrossRef]
  2. P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
    [CrossRef]
  3. J. Sytsma, H. van der Laan, M. Moers, and R. Willekers, "Improved imaging metrology needed for advanced lithography," Semicond. Int. 24, 65-72 (2001).
  4. F. Wang, X. Wang, M. Ma, D. Zhang, and W. Shi, "In-situ measurement methods of lens aberrations," Laser Optoelectron. Prog. 41, 33-37 (2004).
  5. H. Nomura and T. Sato, "Techniques for measuring aberrations in lenses used in photolithography with printed patterns," Appl. Opt. 38, 2800-2807 (1999).
    [CrossRef]
  6. H. Nomura, K. Tawarayama, and T. Kohno, "Aberration measurement from specific photolithographic images: a different approach," Appl. Opt. 39, 1136-1147 (2000).
    [CrossRef]
  7. C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
    [CrossRef]
  8. M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
    [CrossRef]
  9. H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
    [CrossRef]
  10. H. Van der Laan and M. H. Moers, "Method of measuring aberration in an optical imaging system," U.S. patent 6,646,729 (11 November 2003).
  11. H. Mayer and E. Lobach, "Device for the projection printing of masks into a workpiece," U.S. patent 4,540,277 (10 September 1985).
  12. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), pp. 517-543.

2004 (1)

F. Wang, X. Wang, M. Ma, D. Zhang, and W. Shi, "In-situ measurement methods of lens aberrations," Laser Optoelectron. Prog. 41, 33-37 (2004).

2003 (1)

P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

2001 (4)

J. Sytsma, H. van der Laan, M. Moers, and R. Willekers, "Improved imaging metrology needed for advanced lithography," Semicond. Int. 24, 65-72 (2001).

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

2000 (1)

1999 (2)

1997 (1)

T. Brunner, "Impact of lens aberrations on optical lithography," IBM J. Res. Dev. 41, 57-67 (1997).
[CrossRef]

Baselmans, J.

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

Beaudry, N. A.

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), pp. 517-543.

Brecht, A.

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

Brunner, T.

T. Brunner, "Impact of lens aberrations on optical lithography," IBM J. Res. Dev. 41, 57-67 (1997).
[CrossRef]

Conley, W.

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

Cummings, K. D.

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

de Boeij, W.

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

Dierichs, M.

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

Flagello, D. G.

P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

Foster, J.

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

Garreis, R. B.

P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

Garza, C. M.

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

Goehnermeier, A.

P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

Graeupner, P.

P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

Heil, T.

P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

Kohno, T.

Lobach, E.

H. Mayer and E. Lobach, "Device for the projection printing of masks into a workpiece," U.S. patent 4,540,277 (10 September 1985).

Lowisch, M.

P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

Ma, M.

F. Wang, X. Wang, M. Ma, D. Zhang, and W. Shi, "In-situ measurement methods of lens aberrations," Laser Optoelectron. Prog. 41, 33-37 (2004).

Mayer, H.

H. Mayer and E. Lobach, "Device for the projection printing of masks into a workpiece," U.S. patent 4,540,277 (10 September 1985).

McCoo, E.

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

Moers, M.

J. Sytsma, H. van der Laan, M. Moers, and R. Willekers, "Improved imaging metrology needed for advanced lithography," Semicond. Int. 24, 65-72 (2001).

Moers, M. H.

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

H. Van der Laan and M. H. Moers, "Method of measuring aberration in an optical imaging system," U.S. patent 6,646,729 (11 November 2003).

Nomura, H.

Pongers, R.

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

Roman, B. J.

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

Sato, T.

Schippers, M.

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

Shi, W.

F. Wang, X. Wang, M. Ma, D. Zhang, and W. Shi, "In-situ measurement methods of lens aberrations," Laser Optoelectron. Prog. 41, 33-37 (2004).

Stoffels, F.

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

Sytsma, J.

J. Sytsma, H. van der Laan, M. Moers, and R. Willekers, "Improved imaging metrology needed for advanced lithography," Semicond. Int. 24, 65-72 (2001).

Tawarayama, K.

van der Laan, H.

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

J. Sytsma, H. van der Laan, M. Moers, and R. Willekers, "Improved imaging metrology needed for advanced lithography," Semicond. Int. 24, 65-72 (2001).

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

H. Van der Laan and M. H. Moers, "Method of measuring aberration in an optical imaging system," U.S. patent 6,646,729 (11 November 2003).

van Greevenbroek, H.

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

van Zwol, A.

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

Wang, F.

F. Wang, X. Wang, M. Ma, D. Zhang, and W. Shi, "In-situ measurement methods of lens aberrations," Laser Optoelectron. Prog. 41, 33-37 (2004).

Wang, X.

F. Wang, X. Wang, M. Ma, D. Zhang, and W. Shi, "In-situ measurement methods of lens aberrations," Laser Optoelectron. Prog. 41, 33-37 (2004).

Willekers, R.

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

J. Sytsma, H. van der Laan, M. Moers, and R. Willekers, "Improved imaging metrology needed for advanced lithography," Semicond. Int. 24, 65-72 (2001).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), pp. 517-543.

Zellenrath, M.

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

Zhang, D.

F. Wang, X. Wang, M. Ma, D. Zhang, and W. Shi, "In-situ measurement methods of lens aberrations," Laser Optoelectron. Prog. 41, 33-37 (2004).

Appl. Opt. (2)

IBM J. Res. Dev. (1)

T. Brunner, "Impact of lens aberrations on optical lithography," IBM J. Res. Dev. 41, 57-67 (1997).
[CrossRef]

Laser Optoelectron. Prog. (1)

F. Wang, X. Wang, M. Ma, D. Zhang, and W. Shi, "In-situ measurement methods of lens aberrations," Laser Optoelectron. Prog. 41, 33-37 (2004).

Proc. SPIE (4)

C. M. Garza, W. Conley, B. J. Roman, M. Schippers, J. Foster, J. Baselmans, K. D. Cummings, and D. G. Flagello, "Ring test aberration determination and device lithography correlation," Proc. SPIE 4346, 36-44 (2001).
[CrossRef]

M. H. Moers, H. van der Laan, M. Zellenrath, W. de Boeij, N. A. Beaudry, K. D. Cummings, A. van Zwol, A. Brecht, and R. Willekers, "Application of the aberration ring test (ARTEMIS) to determine lens quality and predict its lithographic performance," Proc. SPIE 4346, 1379-1387 (2001).
[CrossRef]

H. Van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001).
[CrossRef]

P. Graeupner, R. B. Garreis, A. Goehnermeier, T. Heil, M. Lowisch, and D. G. Flagello, "Impact of wavefront errors on low k1 processes at extremely high NA," Proc. SPIE 5040, 119-130 (2003).
[CrossRef]

Semicond. Int. (1)

J. Sytsma, H. van der Laan, M. Moers, and R. Willekers, "Improved imaging metrology needed for advanced lithography," Semicond. Int. 24, 65-72 (2001).

Other (3)

H. Van der Laan and M. H. Moers, "Method of measuring aberration in an optical imaging system," U.S. patent 6,646,729 (11 November 2003).

H. Mayer and E. Lobach, "Device for the projection printing of masks into a workpiece," U.S. patent 4,540,277 (10 September 1985).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), pp. 517-543.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross section of the phase-shifted mark for aberration measurement.

Fig. 2
Fig. 2

Amplitude distributions in the lens pupil with the binary mark and the phase-shifted mark used.

Fig. 3
Fig. 3

Sensitivity contours of the x coma for simulation of a 250 nm line∕space mark, obtained with a 0.8 NA projector with λ = 193 nm: (a) contour of Z 7 obtained with a binary mark, (b) contour of Z 7 obtained with a phase-shifted mark, (c) contour of Z 14 obtained with a binary mark, (d) contour of Z 14 obtained with a phase-shifted mark.

Fig. 4
Fig. 4

Sensitivity contours of even aberrations for simulation of a 250 nm line∕space mark, obtained with a 0.8 NA projector with λ = 193 nm: (a) contour of Z 9 obtained with a binary mark, (b) contour of Z 9 obtained with a phase-shifted mark, (c) contour of Z 16 obtained with a binary mark, (d) contour of Z 16 obtained with a phase-shifted mark, (e) contour of Z 12 obtained with a binary mark, (f) contour of Z 12 obtained with a phase-shifted mark.

Tables (3)

Tables Icon

Table 1 Zernike Polynomials From 1st to 16th Orders

Tables Icon

Table 2 Variation Ranges of the Sensitivities of the X Coma

Tables Icon

Table 3 Variation Ranges of the Sensitivities of Even Aberrations

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

w ( ρ , θ ) = Z 1 + Z 2 ρ cos θ + Z 3 ρ sin θ + Z 4 ( 2 ρ 2 1 ) + Z 5 ρ 2 cos 2 θ + Z 6 ρ 2 sin 2 θ + Z 7 ( 3 ρ 3 2 ρ ) cos θ + Z 8 ( 3 ρ 3 2 ρ ) sin θ + Z 9 ( 6 ρ 4 6 ρ 4 + 1 ) + + ,
Δ X ( ρ , θ ) Z 2 + Z 7 ( 3 ρ 2 2 ) + Z 14 ( 10 ρ 4 12 ρ 2 + 3 ) + Z 10 ρ 2 ( 4 cos 2 θ 3 ) ,
Δ Y ( ρ , θ ) Z 3 + Z 8 ( 3 ρ 2 2 ) + Z 15 ( 10 ρ 4 12 ρ 2 + 3 ) Z 11 ρ 2 ( 4 sin 2 θ 3 ) .    
Δ Z s ( ρ ) Z 4 + Z 9 ( 3 ρ 2 1.5 ) + Z 16 ( 10 ρ 4 10 ρ 2 + 1 ) ,
Δ Z a ( ρ ) Z 5 + Z 12 ( 4 ρ 2 3 ) ,
Δ Z s = ( Δ Z x + Δ Z y ) / 2 ,
Δ Z a = Δ Z x Δ Z y ,
Δ X ( NA , σ ) = S Z 2 Z 2 + Δ X ( NA , σ ) Z 7 Z 7 + Δ X ( NA , σ ) Z 14 Z 14 ,
Δ Y ( NA , σ ) = S Z 3 Z 3 + Δ Y ( NA , σ ) Z 8 Z 8 + Δ Y ( NA , σ ) Z 15 Z 15 ,
Δ Z s ( NA , σ ) = S Z 4 Z 4 + Δ Z s ( NA , σ ) Z 9 Z 9 + Δ Z s ( NA , σ ) Z 16 Z 16 ,
Δ Z a ( NA , σ ) = S Z 5 Z 5 + Δ Z a ( NA , σ ) Z 12 Z 12 ,
[ Δ X ( NA , σ 1 ) Δ X ( NA , σ 2 ) ]
= [ S Z 2 Δ X ( NA 1 , σ 1 ) Z 7 Δ X ( NA 1 , σ 1 ) Z 14 S Z 2 Δ X ( NA 2 , σ 2 ) Z 7 Δ X ( NA 2 , σ 2 ) Z 14 ] [ Z 2 Z 7 Z 14 ] .
t = rect ( x / f ) 1 2 f  comb ( x / 2 f ) .
U ( f x ) = f sin c ( f f x ) comb ( 2 f f x )
= 1 2 sin c ( f f x ) δ ( f x n 2 f ) ,    n Z ,
t = rect ( x / f ) 1 4 f { comb [ ( x + f ) / 4 f ] + comb [ ( x f ) / 4 f ] } .
U ( f x ) = f sin c ( f f x ) [ exp ( i 2 π f f x ) comb ( 4 f f x ) exp ( i 2 π f f x ) comb ( 4 f f x ) ]
= 2 i f sin ( 2 π f f x ) sin c ( f f x ) comb ( 4 f f x )
= 1 2 i sin c ( f f x ) sin ( 2 π f f x ) δ ( f x n 4 f ) ,
n Z .

Metrics