Abstract

The two-wave-plate compensator (TWC) method is expanded for full-field retardation measurements by use of a polarization microscope. The sample image is projected onto a CCD camera connected to a computer, allowing the retardation to be measured at all pixels. The retardation accuracy of this implementation of the TWC is evaluated to be 0.06nm. The method is applied to polarization-maintaining fibers and long-period fiber gratings. The measured retardation is in good agreement with the crossed-polarizer images of the fibers. The method achieves a spatial resolution of 0.45µm and a retardation resolution of 0.07nm. The full-field TWC method can thus be a useful tool for characterizing and monitoring the fabrication of optical devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983).
    [CrossRef]
  2. K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983).
    [CrossRef]
  3. K. Kitamura, N. Lyi, and S. Kimura, "Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates," J. Appl. Phys. 60, 1486-1489 (1986).
    [CrossRef]
  4. J. M. Desse, "Three-color differential interferometry," Appl. Opt. 36, 7150-7156 (1997).
  5. I. Bloomer and R. Mirsky, "Broadband spectrophotometry: a fast, simple, accurate tool," Photonics Spectra 36, 86-92 (2002).
  6. A. Redner, "Photoelastic measurements by means of computer-assisted spectral-contents analysis," Exp. Mech. 25, 148-153 (1985).
  7. A. Redner, "Photoelastic measurements of residual stresses for NDE," in Photomechanics and Speckle Metrology, F.-P. Chiang, ed., Proc. SPIE 814, 16-19 (1987).
  8. R. Oldenbourg, E. D. Salmon, and P. T. Tran, "Birefringence of single and bundled microtubules," Biophys. J. 74, 645-654 (1998).
  9. K. Katoh, K. Hammar, P. Smith, and R. Oldenbourg, "Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones," Mol. Biol. Cell 10, 197-210 (1999).
  10. B. Cense and T. C. Chen, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
  11. R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
    [CrossRef]
  12. C. Dragone, "Optimum design of a planar array of tapered waveguides," J. Opt. Soc. Am. A 7, 2081-2093 (1990).
  13. C. Dragone, "An N×N optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).
    [CrossRef]
  14. M. Zirngibl, C. Dragone, and C. H. Joyner, "Demonstration of a 15×15 arrayed waveguide multiplexer on InP," IEEE Photon. Technol. Lett. 4, 1250-1253 (1992).
    [CrossRef]
  15. M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
    [CrossRef]
  16. S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001).
    [CrossRef]
  17. S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
    [CrossRef]
  18. G. W. Scherer, "Thermal stress in a cylinder: application to optical waveguide blanks," J. Non-Cryst. Solids 34, 223-238 (1979).
    [CrossRef]
  19. G. W. Scherer, "Stress-induced index profile distortion in optical waveguides," Appl. Opt. 19, 2000-2006 (1980).
  20. G. W. Scherer, "Stress-optical effects in optical waveguides," J. Non-Cryst. Solids 38, 201-204 (1980).
    [CrossRef]
  21. K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1469 (2002).
    [CrossRef]
  22. P. L. Chu and T. Whitbread, "Measurement of stresses in optical fiber and preform," Appl. Opt. 21, 4241-4245 (1982).
  23. X. Zhao, C. Li, and Y. Z. Xu, "Stress-induced birefringence control in optical planar waveguides," Opt. Lett. 28, 564-566 (2003).
  24. S. Y. Cheng, K. S. Chiang, and H. P. Chan, "Birefringence in benzocyclobutene strip optical waveguides," IEEE Photon. Technol. Lett. 15, 700-702 (2003).
    [CrossRef]
  25. B. L. Bachim and T. K. Gaylord, "Polarization-dependent loss and birefringence in long-period fiber gratings," Appl. Opt. 42, 6816-6823 (2003).
  26. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
    [CrossRef]
  27. D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "Very-high-temperature stable CO2-laser-induced long-period fibre gratings," Electron. Lett. 35, 740-742 (1999).
    [CrossRef]
  28. B. H. Kim, Y. Park, T. J. Ahan, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, "Residual stress relaxation in the core of optical fiber by CO2 laser irradiation," Opt. Lett. 26, 1657-1659 (2001).
  29. B. H. Kim, T. J. Ahan, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, "Effect of CO2 laser irradiation on the refractive-index change in optical fibers," Appl. Opt. 41, 3809-3815 (2002).
  30. Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," Appl. Opt. 41, 21-26 (2001).
  31. T. C. Oakberg, "Measurement of low-level strain birefringence in optical elements using a photoelastic modulator," in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17-20 (1996).
  32. B. Wang, "An improved method for measuring low-level linear birefringence in optical materials," in Inorganic Optical Materials, A. J. Marker III, ed., Proc. SPIE 3424, 120-124 (1998).
    [CrossRef]
  33. T. C. Oakberg and A. J. Bryan, "Use of detectors with photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
    [CrossRef]
  34. B. Wang and T. Oakberg, "A new instrument for measuring both magnitude and angle of low level linear birefringence," Rev. Sci. Instrum. 70, 3847-3854 (1999).
    [CrossRef]
  35. B. Wang, "Accuracy assessment of a linear birefringence measurement system using a Soleil-Babinet compensator," Rev. Sci. Instrum. 72, 4066-4070 (2001).
    [CrossRef]
  36. B. Wang, "Linear birefringence measurement instrument using two photoelastic modulators," Opt. Eng. 41, 981-987 (2002).
    [CrossRef]
  37. B. Wang, J. List, and R. R. Rockwell, "A Stokes polarimeter using two photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
    [CrossRef]
  38. R. Oldenbourg and G. Mei, "New polarized light microscope with precision universal compensator," J. Microsc. 180, 140-147 (1995).
  39. M. Schribak and R. Oldenbourg, "Techniques for fast and sensitive measurements of two-dimensional birefringence distributions," Appl. Opt. 42, 3009-3017 (2002).
  40. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, "Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers," Appl. Opt. 38, 1086-1095 (1999).
  41. Y. Park, U. C. Paek, and D. Y. Kim, "Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography," Opt. Lett. 27, 1217-1219 (2002).
  42. Y. Park, U. C. Paek, and D. Y. Kim, "Determination of stress-induced intrinsic birefringence in a single-mode fiber by measurement of the two-dimensional stress profile," Opt. Lett. 27, 1291-1293 (2002).
  43. Y. Park, U. C. Paek, and D. Y. Kim, "Characterization of a stress-applied polarization-maintaining (PM) fiber through photoelastic tomography," J. Lightwave Technol. 21, 997-1004 (2003).
    [CrossRef]
  44. C. C. Montarou and T. K. Gaylord, "Two-waveplate compensator method for single-point retardation measurements," Appl. Opt. 43, 6580-6595 (2004).
    [CrossRef]
  45. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
  46. C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337-342 (2000).
    [CrossRef]

2004 (1)

2003 (5)

Y. Park, U. C. Paek, and D. Y. Kim, "Characterization of a stress-applied polarization-maintaining (PM) fiber through photoelastic tomography," J. Lightwave Technol. 21, 997-1004 (2003).
[CrossRef]

M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
[CrossRef]

X. Zhao, C. Li, and Y. Z. Xu, "Stress-induced birefringence control in optical planar waveguides," Opt. Lett. 28, 564-566 (2003).

S. Y. Cheng, K. S. Chiang, and H. P. Chan, "Birefringence in benzocyclobutene strip optical waveguides," IEEE Photon. Technol. Lett. 15, 700-702 (2003).
[CrossRef]

B. L. Bachim and T. K. Gaylord, "Polarization-dependent loss and birefringence in long-period fiber gratings," Appl. Opt. 42, 6816-6823 (2003).

2002 (11)

K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1469 (2002).
[CrossRef]

B. H. Kim, T. J. Ahan, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, "Effect of CO2 laser irradiation on the refractive-index change in optical fibers," Appl. Opt. 41, 3809-3815 (2002).

T. C. Oakberg and A. J. Bryan, "Use of detectors with photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

B. Cense and T. C. Chen, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).

R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
[CrossRef]

I. Bloomer and R. Mirsky, "Broadband spectrophotometry: a fast, simple, accurate tool," Photonics Spectra 36, 86-92 (2002).

Y. Park, U. C. Paek, and D. Y. Kim, "Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography," Opt. Lett. 27, 1217-1219 (2002).

Y. Park, U. C. Paek, and D. Y. Kim, "Determination of stress-induced intrinsic birefringence in a single-mode fiber by measurement of the two-dimensional stress profile," Opt. Lett. 27, 1291-1293 (2002).

B. Wang, "Linear birefringence measurement instrument using two photoelastic modulators," Opt. Eng. 41, 981-987 (2002).
[CrossRef]

B. Wang, J. List, and R. R. Rockwell, "A Stokes polarimeter using two photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

M. Schribak and R. Oldenbourg, "Techniques for fast and sensitive measurements of two-dimensional birefringence distributions," Appl. Opt. 42, 3009-3017 (2002).

2001 (5)

B. Wang, "Accuracy assessment of a linear birefringence measurement system using a Soleil-Babinet compensator," Rev. Sci. Instrum. 72, 4066-4070 (2001).
[CrossRef]

S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001).
[CrossRef]

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

B. H. Kim, Y. Park, T. J. Ahan, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, "Residual stress relaxation in the core of optical fiber by CO2 laser irradiation," Opt. Lett. 26, 1657-1659 (2001).

Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," Appl. Opt. 41, 21-26 (2001).

2000 (1)

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337-342 (2000).
[CrossRef]

1999 (4)

K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, "Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers," Appl. Opt. 38, 1086-1095 (1999).

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "Very-high-temperature stable CO2-laser-induced long-period fibre gratings," Electron. Lett. 35, 740-742 (1999).
[CrossRef]

B. Wang and T. Oakberg, "A new instrument for measuring both magnitude and angle of low level linear birefringence," Rev. Sci. Instrum. 70, 3847-3854 (1999).
[CrossRef]

K. Katoh, K. Hammar, P. Smith, and R. Oldenbourg, "Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones," Mol. Biol. Cell 10, 197-210 (1999).

1998 (3)

R. Oldenbourg, E. D. Salmon, and P. T. Tran, "Birefringence of single and bundled microtubules," Biophys. J. 74, 645-654 (1998).

B. Wang, "An improved method for measuring low-level linear birefringence in optical materials," in Inorganic Optical Materials, A. J. Marker III, ed., Proc. SPIE 3424, 120-124 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

1997 (1)

1996 (1)

T. C. Oakberg, "Measurement of low-level strain birefringence in optical elements using a photoelastic modulator," in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17-20 (1996).

1995 (1)

R. Oldenbourg and G. Mei, "New polarized light microscope with precision universal compensator," J. Microsc. 180, 140-147 (1995).

1992 (1)

M. Zirngibl, C. Dragone, and C. H. Joyner, "Demonstration of a 15×15 arrayed waveguide multiplexer on InP," IEEE Photon. Technol. Lett. 4, 1250-1253 (1992).
[CrossRef]

1991 (1)

C. Dragone, "An N×N optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).
[CrossRef]

1990 (1)

1987 (1)

A. Redner, "Photoelastic measurements of residual stresses for NDE," in Photomechanics and Speckle Metrology, F.-P. Chiang, ed., Proc. SPIE 814, 16-19 (1987).

1986 (2)

K. Kitamura, N. Lyi, and S. Kimura, "Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates," J. Appl. Phys. 60, 1486-1489 (1986).
[CrossRef]

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).

1985 (1)

A. Redner, "Photoelastic measurements by means of computer-assisted spectral-contents analysis," Exp. Mech. 25, 148-153 (1985).

1983 (2)

K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983).
[CrossRef]

K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983).
[CrossRef]

1982 (1)

1980 (2)

G. W. Scherer, "Stress-induced index profile distortion in optical waveguides," Appl. Opt. 19, 2000-2006 (1980).

G. W. Scherer, "Stress-optical effects in optical waveguides," J. Non-Cryst. Solids 38, 201-204 (1980).
[CrossRef]

1979 (1)

G. W. Scherer, "Thermal stress in a cylinder: application to optical waveguide blanks," J. Non-Cryst. Solids 34, 223-238 (1979).
[CrossRef]

Ahan, T. J.

Ahn, T. J.

Arai, S.

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

Bachim, B. L.

Bloomer, I.

I. Bloomer and R. Mirsky, "Broadband spectrophotometry: a fast, simple, accurate tool," Photonics Spectra 36, 86-92 (2002).

Bryan, A. J.

T. C. Oakberg and A. J. Bryan, "Use of detectors with photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

Cense, B.

Chan, H. P.

S. Y. Cheng, K. S. Chiang, and H. P. Chan, "Birefringence in benzocyclobutene strip optical waveguides," IEEE Photon. Technol. Lett. 15, 700-702 (2003).
[CrossRef]

Chen, T. C.

Cheng, S. Y.

S. Y. Cheng, K. S. Chiang, and H. P. Chan, "Birefringence in benzocyclobutene strip optical waveguides," IEEE Photon. Technol. Lett. 15, 700-702 (2003).
[CrossRef]

Chiang, K. S.

S. Y. Cheng, K. S. Chiang, and H. P. Chan, "Birefringence in benzocyclobutene strip optical waveguides," IEEE Photon. Technol. Lett. 15, 700-702 (2003).
[CrossRef]

Choi, K. S.

M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
[CrossRef]

Chu, P. L.

Chung, Y.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "Very-high-temperature stable CO2-laser-induced long-period fibre gratings," Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Desse, J. M.

Dossou, K.

Dragone, C.

M. Zirngibl, C. Dragone, and C. H. Joyner, "Demonstration of a 15×15 arrayed waveguide multiplexer on InP," IEEE Photon. Technol. Lett. 4, 1250-1253 (1992).
[CrossRef]

C. Dragone, "An N×N optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).
[CrossRef]

C. Dragone, "Optimum design of a planar array of tapered waveguides," J. Opt. Soc. Am. A 7, 2081-2093 (1990).

Feced, R.

Fontaine, M.

Gaylord, T. K.

C. C. Montarou and T. K. Gaylord, "Two-waveplate compensator method for single-point retardation measurements," Appl. Opt. 43, 6580-6595 (2004).
[CrossRef]

B. L. Bachim and T. K. Gaylord, "Polarization-dependent loss and birefringence in long-period fiber gratings," Appl. Opt. 42, 6816-6823 (2003).

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "Very-high-temperature stable CO2-laser-induced long-period fibre gratings," Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "Very-high-temperature stable CO2-laser-induced long-period fibre gratings," Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Gwak, S. C.

M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
[CrossRef]

Hammar, K.

K. Katoh, K. Hammar, P. Smith, and R. Oldenbourg, "Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones," Mol. Biol. Cell 10, 197-210 (1999).

Han, W. T.

Han, Y.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337-342 (2000).
[CrossRef]

Handerek, V. A.

Hibino, Y.

R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
[CrossRef]

Hida, Y.

R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
[CrossRef]

Higuchi, M.

K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983).
[CrossRef]

Inoue, Y.

R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
[CrossRef]

Itoh, M.

R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
[CrossRef]

Jeong, S. H.

S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001).
[CrossRef]

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

Joyner, C. H.

M. Zirngibl, C. Dragone, and C. H. Joyner, "Demonstration of a 15×15 arrayed waveguide multiplexer on InP," IEEE Photon. Technol. Lett. 4, 1250-1253 (1992).
[CrossRef]

Kamada, O.

K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983).
[CrossRef]

Kanellopoulos, S. E.

Kasahra, R.

R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
[CrossRef]

Katoh, K.

K. Katoh, K. Hammar, P. Smith, and R. Oldenbourg, "Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones," Mol. Biol. Cell 10, 197-210 (1999).

Kim, B. H.

Kim, C. S.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337-342 (2000).
[CrossRef]

Kim, D. Y.

Kim, H. C.

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

Kim, Y. H.

Kimura, S.

K. Kitamura, N. Lyi, and S. Kimura, "Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates," J. Appl. Phys. 60, 1486-1489 (1986).
[CrossRef]

K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983).
[CrossRef]

K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983).
[CrossRef]

Kitamura, K.

K. Kitamura, N. Lyi, and S. Kimura, "Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates," J. Appl. Phys. 60, 1486-1489 (1986).
[CrossRef]

K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983).
[CrossRef]

K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983).
[CrossRef]

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

LaRochelle, S.

Lee, B. H.

Lee, H. J.

M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
[CrossRef]

Li, C.

List, J.

B. Wang, J. List, and R. R. Rockwell, "A Stokes polarimeter using two photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

Lyi, N.

K. Kitamura, N. Lyi, and S. Kimura, "Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates," J. Appl. Phys. 60, 1486-1489 (1986).
[CrossRef]

Mei, G.

R. Oldenbourg and G. Mei, "New polarized light microscope with precision universal compensator," J. Microsc. 180, 140-147 (1995).

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "Very-high-temperature stable CO2-laser-induced long-period fibre gratings," Electron. Lett. 35, 740-742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Mirsky, R.

I. Bloomer and R. Mirsky, "Broadband spectrophotometry: a fast, simple, accurate tool," Photonics Spectra 36, 86-92 (2002).

Miyazawa, Y.

K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983).
[CrossRef]

K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983).
[CrossRef]

Mizumoto, T.

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001).
[CrossRef]

Montarou, C. C.

Mori, Y.

K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983).
[CrossRef]

K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983).
[CrossRef]

Nakano, Y.

S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001).
[CrossRef]

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

Nakatsuhara, K.

S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001).
[CrossRef]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).

Oakberg, T.

B. Wang and T. Oakberg, "A new instrument for measuring both magnitude and angle of low level linear birefringence," Rev. Sci. Instrum. 70, 3847-3854 (1999).
[CrossRef]

Oakberg, T. C.

T. C. Oakberg and A. J. Bryan, "Use of detectors with photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

T. C. Oakberg, "Measurement of low-level strain birefringence in optical elements using a photoelastic modulator," in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17-20 (1996).

Oh, J. K.

M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).

Oldenbourg, R.

M. Schribak and R. Oldenbourg, "Techniques for fast and sensitive measurements of two-dimensional birefringence distributions," Appl. Opt. 42, 3009-3017 (2002).

K. Katoh, K. Hammar, P. Smith, and R. Oldenbourg, "Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones," Mol. Biol. Cell 10, 197-210 (1999).

R. Oldenbourg, E. D. Salmon, and P. T. Tran, "Birefringence of single and bundled microtubules," Biophys. J. 74, 645-654 (1998).

R. Oldenbourg and G. Mei, "New polarized light microscope with precision universal compensator," J. Microsc. 180, 140-147 (1995).

Paek, U. C.

Park, M. Y.

M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
[CrossRef]

Park, Y.

Raine, K. W.

Redner, A.

A. Redner, "Photoelastic measurements of residual stresses for NDE," in Photomechanics and Speckle Metrology, F.-P. Chiang, ed., Proc. SPIE 814, 16-19 (1987).

A. Redner, "Photoelastic measurements by means of computer-assisted spectral-contents analysis," Exp. Mech. 25, 148-153 (1985).

Rockwell, R. R.

B. Wang, J. List, and R. R. Rockwell, "A Stokes polarimeter using two photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

Saida, T.

R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
[CrossRef]

Salmon, E. D.

R. Oldenbourg, E. D. Salmon, and P. T. Tran, "Birefringence of single and bundled microtubules," Biophys. J. 74, 645-654 (1998).

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).

Scherer, G. W.

G. W. Scherer, "Stress-induced index profile distortion in optical waveguides," Appl. Opt. 19, 2000-2006 (1980).

G. W. Scherer, "Stress-optical effects in optical waveguides," J. Non-Cryst. Solids 38, 201-204 (1980).
[CrossRef]

G. W. Scherer, "Thermal stress in a cylinder: application to optical waveguide blanks," J. Non-Cryst. Solids 34, 223-238 (1979).
[CrossRef]

Schribak, M.

Smith, P.

K. Katoh, K. Hammar, P. Smith, and R. Oldenbourg, "Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones," Mol. Biol. Cell 10, 197-210 (1999).

Song, G. H.

M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
[CrossRef]

Takenaka, M.

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001).
[CrossRef]

Tran, P. T.

R. Oldenbourg, E. D. Salmon, and P. T. Tran, "Birefringence of single and bundled microtubules," Biophys. J. 74, 645-654 (1998).

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Wang, B.

B. Wang, "Linear birefringence measurement instrument using two photoelastic modulators," Opt. Eng. 41, 981-987 (2002).
[CrossRef]

B. Wang, J. List, and R. R. Rockwell, "A Stokes polarimeter using two photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

B. Wang, "Accuracy assessment of a linear birefringence measurement system using a Soleil-Babinet compensator," Rev. Sci. Instrum. 72, 4066-4070 (2001).
[CrossRef]

B. Wang and T. Oakberg, "A new instrument for measuring both magnitude and angle of low level linear birefringence," Rev. Sci. Instrum. 70, 3847-3854 (1999).
[CrossRef]

B. Wang, "An improved method for measuring low-level linear birefringence in optical materials," in Inorganic Optical Materials, A. J. Marker III, ed., Proc. SPIE 3424, 120-124 (1998).
[CrossRef]

Whitbread, T.

Wiedmann, J.

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

Xu, Y. Z.

Zhao, X.

Zirngibl, M.

M. Zirngibl, C. Dragone, and C. H. Joyner, "Demonstration of a 15×15 arrayed waveguide multiplexer on InP," IEEE Photon. Technol. Lett. 4, 1250-1253 (1992).
[CrossRef]

Appl. Opt. (9)

Biophys. J. (1)

R. Oldenbourg, E. D. Salmon, and P. T. Tran, "Birefringence of single and bundled microtubules," Biophys. J. 74, 645-654 (1998).

Electron. Lett. (6)

R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002).
[CrossRef]

M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003).
[CrossRef]

S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001).
[CrossRef]

S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "Very-high-temperature stable CO2-laser-induced long-period fibre gratings," Electron. Lett. 35, 740-742 (1999).
[CrossRef]

Exp. Mech. (1)

A. Redner, "Photoelastic measurements by means of computer-assisted spectral-contents analysis," Exp. Mech. 25, 148-153 (1985).

IEEE Photon. Technol. Lett. (3)

C. Dragone, "An N×N optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).
[CrossRef]

M. Zirngibl, C. Dragone, and C. H. Joyner, "Demonstration of a 15×15 arrayed waveguide multiplexer on InP," IEEE Photon. Technol. Lett. 4, 1250-1253 (1992).
[CrossRef]

S. Y. Cheng, K. S. Chiang, and H. P. Chan, "Birefringence in benzocyclobutene strip optical waveguides," IEEE Photon. Technol. Lett. 15, 700-702 (2003).
[CrossRef]

J. Appl. Phys. (1)

K. Kitamura, N. Lyi, and S. Kimura, "Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates," J. Appl. Phys. 60, 1486-1489 (1986).
[CrossRef]

J. Cryst. Growth (2)

K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983).
[CrossRef]

K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983).
[CrossRef]

J. Lightwave Technol. (3)

J. Microsc. (1)

R. Oldenbourg and G. Mei, "New polarized light microscope with precision universal compensator," J. Microsc. 180, 140-147 (1995).

J. Non-Cryst. Solids (2)

G. W. Scherer, "Stress-optical effects in optical waveguides," J. Non-Cryst. Solids 38, 201-204 (1980).
[CrossRef]

G. W. Scherer, "Thermal stress in a cylinder: application to optical waveguide blanks," J. Non-Cryst. Solids 34, 223-238 (1979).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mol. Biol. Cell (1)

K. Katoh, K. Hammar, P. Smith, and R. Oldenbourg, "Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones," Mol. Biol. Cell 10, 197-210 (1999).

Opt. Commun. (1)

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337-342 (2000).
[CrossRef]

Opt. Eng. (1)

B. Wang, "Linear birefringence measurement instrument using two photoelastic modulators," Opt. Eng. 41, 981-987 (2002).
[CrossRef]

Opt. Lett. (5)

Photonics Spectra (1)

I. Bloomer and R. Mirsky, "Broadband spectrophotometry: a fast, simple, accurate tool," Photonics Spectra 36, 86-92 (2002).

Proc. SPIE (5)

A. Redner, "Photoelastic measurements of residual stresses for NDE," in Photomechanics and Speckle Metrology, F.-P. Chiang, ed., Proc. SPIE 814, 16-19 (1987).

B. Wang, J. List, and R. R. Rockwell, "A Stokes polarimeter using two photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

T. C. Oakberg, "Measurement of low-level strain birefringence in optical elements using a photoelastic modulator," in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17-20 (1996).

B. Wang, "An improved method for measuring low-level linear birefringence in optical materials," in Inorganic Optical Materials, A. J. Marker III, ed., Proc. SPIE 3424, 120-124 (1998).
[CrossRef]

T. C. Oakberg and A. J. Bryan, "Use of detectors with photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002).
[CrossRef]

Rev. Sci. Instrum. (2)

B. Wang and T. Oakberg, "A new instrument for measuring both magnitude and angle of low level linear birefringence," Rev. Sci. Instrum. 70, 3847-3854 (1999).
[CrossRef]

B. Wang, "Accuracy assessment of a linear birefringence measurement system using a Soleil-Babinet compensator," Rev. Sci. Instrum. 72, 4066-4070 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Two-wave-plate configuration for the TWC method. The sample is 45° from extinction, followed by a compensator wave plate of known retardation. The compensator is rotated to yield a linearly polarized output. We detect a null of intensity by rotating the analyzer.

Fig. 2
Fig. 2

Polarization microscope system used for full-field retardation measurements.

Fig. 3
Fig. 3

Flow chart of the image acquisition stage for full-field retardation measurements with the TWC technique.

Fig. 4
Fig. 4

Full-field retardation measurements with the TWC method. (a) Compensator angles producing extinction with the sample. (b) Compensator angles producing extinction without the sample. (c) Measured retardation.

Fig. 5
Fig. 5

Full-field retardation measurements with the TWC technique. (a) Compensator angles producing extinction without the sample. (b) Measured retardation.

Fig. 6
Fig. 6

Polarization-maintaining fiber full-field retardation measurement with the TWC method.

Fig. 7
Fig. 7

Comparison of the normalized measured transmittance between crossed polarizers and the normalized transmittance calculated from the retardation of the polarization-maintaining fiber measured by the TWC method shown in Fig. 6.

Fig. 8
Fig. 8

Comparison of the retardation measurement and the gray-scale image intensity between crossed polarizers of a perturbed region of an overmodulated LPFG. (a) Retardation measurements with the TWC technique. (b) Gray-scale image intensity between crossed polarizers.

Fig. 9
Fig. 9

Transmittance of a transversely illuminated LPFG calculated by use of the retardation measured with the TWC technique shown in Fig. 8(a).

Tables (2)

Tables Icon

Table 1 Comparison of Accuracy of the Two-Wave-Plate Compensator, Brace–Köhler, and Sénarmont Techniques

Tables Icon

Table 2 Sensitivity of the Two-Wave-Plate Compensator and Brace–Köhler Techniques

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin 2 θ 2 = - tan ϕ 2 tan ϕ 2 ,

Metrics