Abstract

A steady-state numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers is described, which includes the spatial variations of the carrier density, gain coefficient, differential gain, and internal loss. Of particular interest is the analytic gain coefficient model, which is applied to the semiconductor optical amplifier converter problem for the first time to our knowledge. The model is used to compare performances of upconverters and downconverters for cases of long and short device lengths, and in large and small signal regimes. Comparisons with results of other studies are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauk, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 5, 1300-1303 (1993).
    [CrossRef]
  2. A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
    [CrossRef]
  3. D. A. O. Davies, "Small-signal analysis of wavelength conversion in semiconductor laser amplifier via gain saturation," IEEE Photon. Technol. Lett. 7, 617-619 (1995).
    [CrossRef]
  4. A. Mecozzi, "Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 7, 1471-1473 (1996).
    [CrossRef]
  5. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
    [CrossRef]
  6. T. Duruhuus, B. Mikkelsen, and K. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifier and their crosstalk and intermodulation distorition," J. Lightwave Technol. 10, 1056-1064 (1992).
    [CrossRef]
  7. I. Valiente, J. Simon, and M. Ligne, "Theoretical analysis of semiconductor optical amplifier wavelength shifter," Electron. Lett. 29, 502-503 (1993).
    [CrossRef]
  8. M. L. Nielsen, D. Blumenthal, and J. Mørk, "A Transfer function approach to the small-signal response of saturated semiconductor optical amplifers," J. Lightwave Technol. 18, 2151-2156 (2000).
    [CrossRef]
  9. M. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
    [CrossRef]
  10. G. Agrawal and I. Habbab, "Effect of four-wave mixing on multichannel amplification in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 501-505 (1990).
    [CrossRef]
  11. M. Adams, J. Collins and I. Henning, "Analysis of semiconductor laser optical amplifiers," IEE Proc.- J: Optoelectron . 132, 58-63 (1985).
    [CrossRef]
  12. D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).
    [CrossRef]
  13. D. Wang, J. BuckI. Ferguson, and K. Brennan, "Numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," Opt. Eng. 45, 024203 (2006).
    [CrossRef]
  14. K.-H. Lee, K.-H. Park, and W.-Y. Choi, "Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses," Opt. Eng. 43, 2715-2718 (2004).
    [CrossRef]
  15. P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
    [CrossRef]

2006 (1)

D. Wang, J. BuckI. Ferguson, and K. Brennan, "Numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," Opt. Eng. 45, 024203 (2006).
[CrossRef]

2004 (1)

K.-H. Lee, K.-H. Park, and W.-Y. Choi, "Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses," Opt. Eng. 43, 2715-2718 (2004).
[CrossRef]

2001 (1)

M. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

2000 (1)

1998 (1)

A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

1996 (2)

A. Mecozzi, "Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 7, 1471-1473 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

1995 (1)

D. A. O. Davies, "Small-signal analysis of wavelength conversion in semiconductor laser amplifier via gain saturation," IEEE Photon. Technol. Lett. 7, 617-619 (1995).
[CrossRef]

1994 (1)

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

1993 (2)

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauk, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 5, 1300-1303 (1993).
[CrossRef]

I. Valiente, J. Simon, and M. Ligne, "Theoretical analysis of semiconductor optical amplifier wavelength shifter," Electron. Lett. 29, 502-503 (1993).
[CrossRef]

1992 (1)

T. Duruhuus, B. Mikkelsen, and K. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifier and their crosstalk and intermodulation distorition," J. Lightwave Technol. 10, 1056-1064 (1992).
[CrossRef]

1990 (1)

G. Agrawal and I. Habbab, "Effect of four-wave mixing on multichannel amplification in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 501-505 (1990).
[CrossRef]

1985 (1)

M. Adams, J. Collins and I. Henning, "Analysis of semiconductor laser optical amplifiers," IEE Proc.- J: Optoelectron . 132, 58-63 (1985).
[CrossRef]

1983 (1)

D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).
[CrossRef]

Adams, M.

M. Adams, J. Collins and I. Henning, "Analysis of semiconductor laser optical amplifiers," IEE Proc.- J: Optoelectron . 132, 58-63 (1985).
[CrossRef]

Agrawal, G.

G. Agrawal and I. Habbab, "Effect of four-wave mixing on multichannel amplification in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 501-505 (1990).
[CrossRef]

Blumenthal, D.

Bonnevie, D.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Brennan, K.

D. Wang, J. BuckI. Ferguson, and K. Brennan, "Numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," Opt. Eng. 45, 024203 (2006).
[CrossRef]

Buck, J.

D. Wang, J. BuckI. Ferguson, and K. Brennan, "Numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," Opt. Eng. 45, 024203 (2006).
[CrossRef]

Choi, W.-Y.

K.-H. Lee, K.-H. Park, and W.-Y. Choi, "Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses," Opt. Eng. 43, 2715-2718 (2004).
[CrossRef]

Collins, J.

M. Adams, J. Collins and I. Henning, "Analysis of semiconductor laser optical amplifiers," IEE Proc.- J: Optoelectron . 132, 58-63 (1985).
[CrossRef]

Connelly, M.

M. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Davies, D. A. O.

D. A. O. Davies, "Small-signal analysis of wavelength conversion in semiconductor laser amplifier via gain saturation," IEEE Photon. Technol. Lett. 7, 617-619 (1995).
[CrossRef]

Derouin, E.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Doussiere, P.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Duruhuus, T.

T. Duruhuus, B. Mikkelsen, and K. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifier and their crosstalk and intermodulation distorition," J. Lightwave Technol. 10, 1056-1064 (1992).
[CrossRef]

Ellis, A.

A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

Ferguson, I.

D. Wang, J. BuckI. Ferguson, and K. Brennan, "Numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," Opt. Eng. 45, 024203 (2006).
[CrossRef]

Fillion, T.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Garabedian, P.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Glance, B.

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauk, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 5, 1300-1303 (1993).
[CrossRef]

Gnauk, A.

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauk, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 5, 1300-1303 (1993).
[CrossRef]

Graver, C.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Habbab, I.

G. Agrawal and I. Habbab, "Effect of four-wave mixing on multichannel amplification in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 501-505 (1990).
[CrossRef]

Henning, I.

M. Adams, J. Collins and I. Henning, "Analysis of semiconductor laser optical amplifiers," IEE Proc.- J: Optoelectron . 132, 58-63 (1985).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Kashyap, R.

A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

Kelly, A.

A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

Klenk, M.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Leclere, D.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Lee, K.-H.

K.-H. Lee, K.-H. Park, and W.-Y. Choi, "Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses," Opt. Eng. 43, 2715-2718 (2004).
[CrossRef]

Ligne, M.

I. Valiente, J. Simon, and M. Ligne, "Theoretical analysis of semiconductor optical amplifier wavelength shifter," Electron. Lett. 29, 502-503 (1993).
[CrossRef]

Marcuse, D.

D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).
[CrossRef]

Mecozzi, A.

A. Mecozzi, "Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 7, 1471-1473 (1996).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

T. Duruhuus, B. Mikkelsen, and K. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifier and their crosstalk and intermodulation distorition," J. Lightwave Technol. 10, 1056-1064 (1992).
[CrossRef]

Monnot, M.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Moodie, D.

A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

Mørk, J.

Nesset, D.

A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

Nielsen, M. L.

Park, K.-H.

K.-H. Lee, K.-H. Park, and W.-Y. Choi, "Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses," Opt. Eng. 43, 2715-2718 (2004).
[CrossRef]

Perino, J.

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauk, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 5, 1300-1303 (1993).
[CrossRef]

Pitcher, D.

A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

Provost, J.

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

Simon, J.

I. Valiente, J. Simon, and M. Ligne, "Theoretical analysis of semiconductor optical amplifier wavelength shifter," Electron. Lett. 29, 502-503 (1993).
[CrossRef]

Stubkjaer, K.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

T. Duruhuus, B. Mikkelsen, and K. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifier and their crosstalk and intermodulation distorition," J. Lightwave Technol. 10, 1056-1064 (1992).
[CrossRef]

Valiente, I.

I. Valiente, J. Simon, and M. Ligne, "Theoretical analysis of semiconductor optical amplifier wavelength shifter," Electron. Lett. 29, 502-503 (1993).
[CrossRef]

Wang, D.

D. Wang, J. BuckI. Ferguson, and K. Brennan, "Numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," Opt. Eng. 45, 024203 (2006).
[CrossRef]

Wiesenfeld, J.

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauk, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 5, 1300-1303 (1993).
[CrossRef]

Electron. Lett. (1)

I. Valiente, J. Simon, and M. Ligne, "Theoretical analysis of semiconductor optical amplifier wavelength shifter," Electron. Lett. 29, 502-503 (1993).
[CrossRef]

IEE Electron. Lett. (1)

A. Ellis, A. Kelly, D. Nesset, D. Pitcher, D. Moodie, and R. Kashyap, "Error free 100 gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," IEE Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

IEE Proc.- J: Optoelectron (1)

M. Adams, J. Collins and I. Henning, "Analysis of semiconductor laser optical amplifiers," IEE Proc.- J: Optoelectron . 132, 58-63 (1985).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).
[CrossRef]

M. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

G. Agrawal and I. Habbab, "Effect of four-wave mixing on multichannel amplification in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 501-505 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

D. A. O. Davies, "Small-signal analysis of wavelength conversion in semiconductor laser amplifier via gain saturation," IEEE Photon. Technol. Lett. 7, 617-619 (1995).
[CrossRef]

A. Mecozzi, "Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 7, 1471-1473 (1996).
[CrossRef]

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauk, "Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 5, 1300-1303 (1993).
[CrossRef]

P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. Provost, D. Leclere, and M. Klenk, "1.55 μm polarisation Independent semiconductor optical amplifier with 25 dB fiber to fiber gain," IEEE Photon. Technol. Lett. 6, 170-172 (1994).
[CrossRef]

J. Lightwave Technol. (3)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

T. Duruhuus, B. Mikkelsen, and K. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifier and their crosstalk and intermodulation distorition," J. Lightwave Technol. 10, 1056-1064 (1992).
[CrossRef]

M. L. Nielsen, D. Blumenthal, and J. Mørk, "A Transfer function approach to the small-signal response of saturated semiconductor optical amplifers," J. Lightwave Technol. 18, 2151-2156 (2000).
[CrossRef]

Opt. Eng. (2)

D. Wang, J. BuckI. Ferguson, and K. Brennan, "Numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," Opt. Eng. 45, 024203 (2006).
[CrossRef]

K.-H. Lee, K.-H. Park, and W.-Y. Choi, "Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses," Opt. Eng. 43, 2715-2718 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Copropagation semiconductor optical amplifier wavelength converter.

Fig. 2
Fig. 2

Large signal simulation results for the long SOA upconverter. (a) Pump power (solid curve) and probe power (dotted curve); (b) carrier density (solid curve) and internal loss (dotted curve).

Fig. 3
Fig. 3

Large signal simulation results for the long SOA downconverter. (a) Pump power (solid curve) and probe power (dotted curve); (b) carrier density (solid curve) and the internal loss (dotted curve).

Fig. 4
Fig. 4

Large signal simulation results for the short SOA upconverter. (a) Pump power (solid curve) and probe power (dotted curve); (b) carrier density (solid curve) and the internal loss (dotted curve).

Fig. 5
Fig. 5

Large signal simulation results for the short SOA downconverter. (a) Pump power (solid curve) and probe power (dotted curve); (b) carrier density (solid curve) and the internal loss (dotted curve).

Fig. 6
Fig. 6

Small signal simulation results for the long SOA converter. (a) Pump power (solid curve) and the probe power (dotted curve) for the upconverter at 6 GHz modulation; (b) pump power (solid curve) and the probe power (dotted curve) for the downconverter at 5 GHz modulation.

Fig. 7
Fig. 7

Small signal simulation results for the short downconverter at 1 GHz modulation. (a) Pump power (solid curve) and the probe power (dotted curve) for the upconverter; (b) pump power (solid curve) and the probe power (dotted curve) for the downconverter.

Fig. 8
Fig. 8

Small signal component of carrier density versus different modulation frequency: (a) long SOA and (b) short SOA.

Fig. 9
Fig. 9

Normalized converter efficiency plots of downconverter: Our simulations (solid curve); the simulated (dotted curve) and experimental data (circles) in Ref. 5. For the 1250 μm SOA with an injection current of 220 mA, the input pump power is −5 dBm, and the input probe power is −8 dBm.

Fig. 10
Fig. 10

Downconverter (○) and upconverter (Δ) performance comparison for the 1250 μm SOA, with 220 mA injection current, −5 dBm input pump power, and −8 dBm input probe power. (a) Conversion efficiency. (b) Normalized conversion efficiency with respect to their conversion efficiency at 0.1 GHz, respectively.

Fig. 11
Fig. 11

Downconverter (○) and upconverter (Δ) performance comparison for the 450 μm SOA, with 80 mA injection current, −5 dBm input pump power, and −8 dBm input probe power.

Tables (1)

Tables Icon

Table 1 Large Signal Gain Comparison for Long and Short Converters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

d S i ( z ) d z = { Γ g [ v i , N ( z ) ] α [ N ( z ) ] } S i ( z ) , i = 1 , 2 ,
d N ( z ) d t = J q d R [ N ( z ) ] V g Γ { g [ v 1 , N ( z ) ] S 1 ( z ) + g [ v 2 , N ( z ) ] S 2 ( z ) } = 0 ,
g ( ν , N ) = c 2 4 2 π 3 / 2 n 1     2 τ 1 ν 2 [ 2 m e m hh ħ ( m e + m hh )ℏ ħ ] 3 / 2 ν E g ( N ) h × [ f c ( ν ) f ν ( ν ) ] ,
τ 1 = 1 A rad + B rad N ( z ) ,
α ( N ) = α 0 + Γ β N ,
R [ N ( z , t ) ] = R [ N 0 ( z ) ] + R N n ( z ) exp ( j ω t ) ,
g [ ν i , N ( z , t ) ] = g [ ν i , N 0 ( z ) ] + g n n ( z ) exp ( j ω t ) ,
α [ N ( z , t ) ] = α [ N 0 ( z ) ] + α n n ( z ) exp ( j ω t )
= α [ N 0 ( z ) ] + Γ β n ( z ) exp ( j ω t ) .
d S i 0 ( z ) d z = { Γ g [ ν i , N 0 ( z ) ] α [ N 0 ( z ) ] } S i 0 ( z ) , i = 1 , 2 ,
J q d N 0 ( z ) τ d V g Γ { g [ ν 1 , N 0 ( z ) ] S 10 ( z ) + g [ ν 2 , N 0 ( z ) ] S 20 ( z ) } = 0 .
d s i ( z ) d z = { Γ g [ ν i , N 0 ( z ) ] α [ N 0 ( z ) ] } s i ( z ) + Γ { a n [ ν i , N 0 ( z ) ] β } S i 0 ( z ) n ( z ) ,
n ( z ) = A ( z ) B ( z ) ,
A ( z ) = Γ V g { g [ ν 1 , N 0 ( z ) ] s 1 ( z ) + g [ ν 2 , N 0 ( z ) ] s 2 ( z ) } ,
B ( z ) = 1 τ a + Γ V g { a n [ ν 1 , N 0 ( z ) ] S 10 ( z ) + a n [ ν 2 , N 0 ( z ) ] S 20 ( z ) } + j ω ,
a n ( ν i , N ) = g ( ν i , N ) N .
R ( N ) = N τ d .
1 τ a = ( R N ) N = N m ,
η ( ω ) = OMD ( ω ,   L , 2 ) OMD ( ω ,   0 , 1 ) ,

Metrics