Abstract

Writing a fiber Bragg grating in optical fiber generates an intrinsic broadband absorption term that can result in photothermal heating during subsequent use with fiber core guided light. This, in turn, can cause a significant shift of a grating resonance via the thermo-optic coefficient, even at low in-fiber light powers. The magnitude of the absorption term and its dependence on the grating strength are detailed. We further show how the degree of heating can be influenced by the particular environment in which the grating is placed and that, while the shift can be quite deleterious for some applications, its effect can be mitigated. A simple conductive model is developed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1403 (1997).
    [CrossRef]
  2. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
    [CrossRef]
  3. F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett. 12, 847-849 (1987).
    [CrossRef] [PubMed]
  4. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
    [CrossRef] [PubMed]
  5. G. Imeshev, I. Hartl, and M. E. Fermann, "Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor," Opt. Lett. 29, 679-681 (2004).
    [CrossRef] [PubMed]
  6. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
    [CrossRef] [PubMed]
  7. D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, "Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating," Opt. Lett. 23, 328-330 (1998).
    [CrossRef]
  8. J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, "Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings," Opt. Lett. 30, 2457-2459 (2005).
    [CrossRef] [PubMed]
  9. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, "Er3+:Yb3+-codoped fiber distributed-feedback laser," Opt. Lett. 19, 2101-2103 (1994).
    [CrossRef] [PubMed]
  10. Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, "Absolute strain measurement using an in fiber-Bragg-grating-based Fabry-Perot sensor" Electron. Lett. 36, 708-709 (2000).
    [CrossRef]
  11. D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).
  12. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh sensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett. 29, 1191-1193 (1993).
    [CrossRef]
  13. C. G. Askins and M. A. Putnam, "Photodarkening and photobleaching in fiber optic Bragg gratings," J. Lightwave Technol. 15, 1363-1370 (1997).
    [CrossRef]
  14. D. Johlen, F. Knappe, H. Renner, and E. Brinkmeyer, "UV-induced absorption, scattering and transition losses in UV side-written fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD1.
  15. J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler, "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005).
    [CrossRef] [PubMed]
  16. N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Anomalous linewidth behavior in short-cavity single-frequency fiber lasers," IEEE Photon. Technol. Lett. 17, 546-548 (2005).
    [CrossRef]
  17. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, "Demonstration of a passive subpicostrain fiber strain sensor," Opt. Lett. 30, 1923-1925 (2005).
    [CrossRef] [PubMed]
  18. M. B. Reid and M. Özcan, "Temperature dependence of fiber optic Bragg gratings at low temperatures," Opt. Eng. 37, 237-240 (1998).
    [CrossRef]
  19. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett. 29, 566-568, (1993).
    [CrossRef]
  20. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  21. V. Grubsky, D. S. Starodubov, and J. Feinberg, "Effect of molecular water on thermal stability of gratings in hydrogen-loaded optical fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD2.
  22. M. O. Zabezhailov, A. L. Tomashuk, I. V. Nikolin, and K. M. Golant, "Induced absorption in optical fibers in the near-infrared region: the Effect of H2 and D2 Loading," in the Sixth European Conference on Radiation and Its Effects on Components and Systems, (2001), pp. 192-194.
  23. D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing (Minerals, Metals & Materials Society, 1994).
  24. J. T. Mok, E. Tsoy, I. C. M. Littler, C. M. de Sterke, and B. J. Eggleton, "Slow gap soliton propagation excited by microchip Q-switched pulses," 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sydney (2005), paper WF3.

2005 (4)

2004 (1)

2000 (1)

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, "Absolute strain measurement using an in fiber-Bragg-grating-based Fabry-Perot sensor" Electron. Lett. 36, 708-709 (2000).
[CrossRef]

1998 (2)

1997 (2)

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1403 (1997).
[CrossRef]

C. G. Askins and M. A. Putnam, "Photodarkening and photobleaching in fiber optic Bragg gratings," J. Lightwave Technol. 15, 1363-1370 (1997).
[CrossRef]

1996 (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

1995 (1)

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

1994 (2)

1993 (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh sensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett. 29, 566-568, (1993).
[CrossRef]

1987 (1)

Albert, J.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
[CrossRef] [PubMed]

Anderson, D. Z.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett. 29, 566-568, (1993).
[CrossRef]

Archambault, J.-L.

Askins, C. G.

C. G. Askins and M. A. Putnam, "Photodarkening and photobleaching in fiber optic Bragg gratings," J. Lightwave Technol. 15, 1363-1370 (1997).
[CrossRef]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh sensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

Bennion, I.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).

Bilodeau, F.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
[CrossRef] [PubMed]

Brinkmeyer, E.

D. Johlen, F. Knappe, H. Renner, and E. Brinkmeyer, "UV-induced absorption, scattering and transition losses in UV side-written fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD1.

Broderick, N. G. R.

Chow, J. H.

Cooper, M. R.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, "Absolute strain measurement using an in fiber-Bragg-grating-based Fabry-Perot sensor" Electron. Lett. 36, 708-709 (2000).
[CrossRef]

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

J. T. Mok, E. Tsoy, I. C. M. Littler, C. M. de Sterke, and B. J. Eggleton, "Slow gap soliton propagation excited by microchip Q-switched pulses," 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sydney (2005), paper WF3.

Eggleton, B. J.

J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, "Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings," Opt. Lett. 30, 2457-2459 (2005).
[CrossRef] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

J. T. Mok, E. Tsoy, I. C. M. Littler, C. M. de Sterke, and B. J. Eggleton, "Slow gap soliton propagation excited by microchip Q-switched pulses," 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sydney (2005), paper WF3.

Erdogan, T.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett. 29, 566-568, (1993).
[CrossRef]

Feinberg, J.

V. Grubsky, D. S. Starodubov, and J. Feinberg, "Effect of molecular water on thermal stability of gratings in hydrogen-loaded optical fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD2.

Fermann, M. E.

Geiger, G. H.

D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing (Minerals, Metals & Materials Society, 1994).

Giles, C. R.

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1403 (1997).
[CrossRef]

Golant, K. M.

M. O. Zabezhailov, A. L. Tomashuk, I. V. Nikolin, and K. M. Golant, "Induced absorption in optical fibers in the near-infrared region: the Effect of H2 and D2 Loading," in the Sixth European Conference on Radiation and Its Effects on Components and Systems, (2001), pp. 192-194.

Gray, M. B.

Grubsky, V.

V. Grubsky, D. S. Starodubov, and J. Feinberg, "Effect of molecular water on thermal stability of gratings in hydrogen-loaded optical fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD2.

Hartl, I.

Hill, D. J.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).

Hill, K. O.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
[CrossRef] [PubMed]

Horak, P.

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Anomalous linewidth behavior in short-cavity single-frequency fiber lasers," IEEE Photon. Technol. Lett. 17, 546-548 (2005).
[CrossRef]

Ibsen, M.

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Anomalous linewidth behavior in short-cavity single-frequency fiber lasers," IEEE Photon. Technol. Lett. 17, 546-548 (2005).
[CrossRef]

D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, "Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating," Opt. Lett. 23, 328-330 (1998).
[CrossRef]

Imeshev, G.

Jackson, D. A.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, "Absolute strain measurement using an in fiber-Bragg-grating-based Fabry-Perot sensor" Electron. Lett. 36, 708-709 (2000).
[CrossRef]

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).

Johlen, D.

D. Johlen, F. Knappe, H. Renner, and E. Brinkmeyer, "UV-induced absorption, scattering and transition losses in UV side-written fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD1.

Johnson, D. C.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
[CrossRef] [PubMed]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kitagawa, T.

Knappe, F.

D. Johlen, F. Knappe, H. Renner, and E. Brinkmeyer, "UV-induced absorption, scattering and transition losses in UV side-written fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD1.

Kringlebotn, J. T.

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Laming, R. I.

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh sensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

Littler, I. C. M.

Loh, W. H.

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Anomalous linewidth behavior in short-cavity single-frequency fiber lasers," IEEE Photon. Technol. Lett. 17, 546-548 (2005).
[CrossRef]

Malo, B.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
[CrossRef] [PubMed]

McClelland, D. E.

Mizrahi, V.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett. 29, 566-568, (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh sensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

Mok, J. T.

J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, "Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings," Opt. Lett. 30, 2457-2459 (2005).
[CrossRef] [PubMed]

J. T. Mok, E. Tsoy, I. C. M. Littler, C. M. de Sterke, and B. J. Eggleton, "Slow gap soliton propagation excited by microchip Q-switched pulses," 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sydney (2005), paper WF3.

Nash, P. J.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).

Nikolin, I. V.

M. O. Zabezhailov, A. L. Tomashuk, I. V. Nikolin, and K. M. Golant, "Induced absorption in optical fibers in the near-infrared region: the Effect of H2 and D2 Loading," in the Sixth European Conference on Radiation and Its Effects on Components and Systems, (2001), pp. 192-194.

O'Neill, S. F.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).

Ouellette, F.

Özcan, M.

M. B. Reid and M. Özcan, "Temperature dependence of fiber optic Bragg gratings at low temperatures," Opt. Eng. 37, 237-240 (1998).
[CrossRef]

Pannell, C. N.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, "Absolute strain measurement using an in fiber-Bragg-grating-based Fabry-Perot sensor" Electron. Lett. 36, 708-709 (2000).
[CrossRef]

Payne, D. N.

Poirier, D. R.

D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing (Minerals, Metals & Materials Society, 1994).

Putnam, M. A.

C. G. Askins and M. A. Putnam, "Photodarkening and photobleaching in fiber optic Bragg gratings," J. Lightwave Technol. 15, 1363-1370 (1997).
[CrossRef]

Rao, Y. J.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, "Absolute strain measurement using an in fiber-Bragg-grating-based Fabry-Perot sensor" Electron. Lett. 36, 708-709 (2000).
[CrossRef]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh sensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

Reekie, L.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, "Absolute strain measurement using an in fiber-Bragg-grating-based Fabry-Perot sensor" Electron. Lett. 36, 708-709 (2000).
[CrossRef]

J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, "Er3+:Yb3+-codoped fiber distributed-feedback laser," Opt. Lett. 19, 2101-2103 (1994).
[CrossRef] [PubMed]

Reid, M. B.

M. B. Reid and M. Özcan, "Temperature dependence of fiber optic Bragg gratings at low temperatures," Opt. Eng. 37, 237-240 (1998).
[CrossRef]

Renner, H.

D. Johlen, F. Knappe, H. Renner, and E. Brinkmeyer, "UV-induced absorption, scattering and transition losses in UV side-written fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD1.

Richardson, D. J.

Sheard, B. S.

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Starodubov, D. S.

V. Grubsky, D. S. Starodubov, and J. Feinberg, "Effect of molecular water on thermal stability of gratings in hydrogen-loaded optical fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD2.

Takiguchi, K.

Taverner, D.

Theriault, S.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
[CrossRef] [PubMed]

Tomashuk, A. L.

M. O. Zabezhailov, A. L. Tomashuk, I. V. Nikolin, and K. M. Golant, "Induced absorption in optical fibers in the near-infrared region: the Effect of H2 and D2 Loading," in the Sixth European Conference on Radiation and Its Effects on Components and Systems, (2001), pp. 192-194.

Tsoy, E.

J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, "Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings," Opt. Lett. 30, 2457-2459 (2005).
[CrossRef] [PubMed]

J. T. Mok, E. Tsoy, I. C. M. Littler, C. M. de Sterke, and B. J. Eggleton, "Slow gap soliton propagation excited by microchip Q-switched pulses," 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sydney (2005), paper WF3.

Voo, N. Y.

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Anomalous linewidth behavior in short-cavity single-frequency fiber lasers," IEEE Photon. Technol. Lett. 17, 546-548 (2005).
[CrossRef]

Webb, D. J.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).

White, A. E.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett. 29, 566-568, (1993).
[CrossRef]

Zabezhailov, M. O.

M. O. Zabezhailov, A. L. Tomashuk, I. V. Nikolin, and K. M. Golant, "Induced absorption in optical fibers in the near-infrared region: the Effect of H2 and D2 Loading," in the Sixth European Conference on Radiation and Its Effects on Components and Systems, (2001), pp. 192-194.

Zhang, L.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).

Electron. Lett. (3)

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, "Absolute strain measurement using an in fiber-Bragg-grating-based Fabry-Perot sensor" Electron. Lett. 36, 708-709 (2000).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh sensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett. 29, 1191-1193 (1993).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett. 29, 566-568, (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photon. Technol. Lett. 7, 388-390 (1995).
[CrossRef]

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Anomalous linewidth behavior in short-cavity single-frequency fiber lasers," IEEE Photon. Technol. Lett. 17, 546-548 (2005).
[CrossRef]

J. Lightwave Technol. (2)

C. G. Askins and M. A. Putnam, "Photodarkening and photobleaching in fiber optic Bragg gratings," J. Lightwave Technol. 15, 1363-1370 (1997).
[CrossRef]

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1403 (1997).
[CrossRef]

Opt. Eng. (1)

M. B. Reid and M. Özcan, "Temperature dependence of fiber optic Bragg gratings at low temperatures," Opt. Eng. 37, 237-240 (1998).
[CrossRef]

Opt. Lett. (8)

J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, "Demonstration of a passive subpicostrain fiber strain sensor," Opt. Lett. 30, 1923-1925 (2005).
[CrossRef] [PubMed]

J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler, "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005).
[CrossRef] [PubMed]

F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett. 12, 847-849 (1987).
[CrossRef] [PubMed]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
[CrossRef] [PubMed]

G. Imeshev, I. Hartl, and M. E. Fermann, "Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor," Opt. Lett. 29, 679-681 (2004).
[CrossRef] [PubMed]

D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, "Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating," Opt. Lett. 23, 328-330 (1998).
[CrossRef]

J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, "Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings," Opt. Lett. 30, 2457-2459 (2005).
[CrossRef] [PubMed]

J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, "Er3+:Yb3+-codoped fiber distributed-feedback laser," Opt. Lett. 19, 2101-2103 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Other (7)

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "Fiber laser hydrophone array," in Fiber Optic Sensor Technology and Applications, M.A.Marcus and B.Culshaw, eds., Proc. SPIE 3860, 55-66 (1999).

D. Johlen, F. Knappe, H. Renner, and E. Brinkmeyer, "UV-induced absorption, scattering and transition losses in UV side-written fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD1.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

V. Grubsky, D. S. Starodubov, and J. Feinberg, "Effect of molecular water on thermal stability of gratings in hydrogen-loaded optical fibers," in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD2.

M. O. Zabezhailov, A. L. Tomashuk, I. V. Nikolin, and K. M. Golant, "Induced absorption in optical fibers in the near-infrared region: the Effect of H2 and D2 Loading," in the Sixth European Conference on Radiation and Its Effects on Components and Systems, (2001), pp. 192-194.

D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing (Minerals, Metals & Materials Society, 1994).

J. T. Mok, E. Tsoy, I. C. M. Littler, C. M. de Sterke, and B. J. Eggleton, "Slow gap soliton propagation excited by microchip Q-switched pulses," 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sydney (2005), paper WF3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Typical uniform grating, linear transmission spectrum showing the relatively broadband absorption induced by the UV exposure.

Fig. 2
Fig. 2

Saturation behavior of grating strength as the fiber is exposed to the UV interference pattern. From the data, the asymptotic value of κ is 3700 m−1.

Fig. 3
Fig. 3

UV-induced absorption depends linearly on the grating strength, as given by the coupling coefficient κ, up to the saturation value of κ.

Fig. 4
Fig. 4

Experimental setup. A weak probe laser beam measures the spectral shift induced by the strong nonresonant laser light λ = 1450 nm. A draft-free enclosure ensures that the air surrounding the fiber is kept still.

Fig. 5
Fig. 5

Wavelength shift per mW of incident, core guided, light power for each value of the absorption coefficient scaled for λ = 1450 nm. The dotted curve is a simple power-law fit.

Fig. 6
Fig. 6

Shell conduction model to predict the magnitude of the wavelength shift. The fiber core is surrounded by the silica cladding and then a buffer of air. From the conductivities, the temperature profile is shown indicatively, and not to scale, as a dashed curve.

Fig. 7
Fig. 7

Conduction model fit to photothermal wavelength shift data with absorption scaled for λ = 1450 nm. The dotted curve assumes that the radius of the air buffer is constant for all absorption coefficients. The solid curve allows the radius to vary quadratically.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Nu = 0.902 ( Gr 4 ) 1 / 4 Pr 1 / 2 ( 0.861 + Pr ) 1 / 4 ,
Δ T = [ 1 + 2 ln ( R clad R core ) ] 4 π k d Q d L ,
Δ T = [ 1 + 2 ln ( R clad R core ) ] 1000 α P in 4 π k .
Δ T = [ 1 + 2 ln ( R air R clad ) ] 1000 α P in 4 π k air .

Metrics