Abstract

We report on an electrically controlled liquid-crystal-based variable optical lens filled with a dual-frequency nematic material. The lens design employs a hole-patterned electrode structure in a flat nematic cell. In order to decrease the lens switching time we maximize the dielectric torque by using a dual-frequency nematic material that is aligned at an angle approximately 45° with respect to the bounding plates by obliquely deposited SiOx, and by using an overdrive scheme of electrical switching. Depending on the frequency of the applied field, the director realigns either toward the homeotropic state (perpendicular to the substrates) or toward the planar state (parallel to the substrates), which allows one to control not only the absolute value of the focal length but also its sign. Optical performance of the liquid-crystal lens is close to that of an ideal thin lens.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically variable liquid crystal lens based on the dielectric dividing principle

Oleksandr Sova, Victor Reshetnyak, Tigran Galstian, and Karen Asatryan
J. Opt. Soc. Am. A 32(5) 803-808 (2015)

Dynamic electro-optic response of graphene/graphitic flakes in nematic liquid crystals

Weiwei Tie, Surjya Sarathi Bhattacharyya, Young Jin Lim, Sang Won Lee, Tae Hoon Lee, Young Hee Lee, and Seung Hee Lee
Opt. Express 21(17) 19867-19879 (2013)

Surface-polymer stabilized liquid crystals with dual-frequency control

Amalya Minasyan and Tigran Galstian
Appl. Opt. 52(22) E60-E67 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription