Abstract

We report on an electrically controlled liquid-crystal-based variable optical lens filled with a dual-frequency nematic material. The lens design employs a hole-patterned electrode structure in a flat nematic cell. In order to decrease the lens switching time we maximize the dielectric torque by using a dual-frequency nematic material that is aligned at an angle approximately 45° with respect to the bounding plates by obliquely deposited SiOx, and by using an overdrive scheme of electrical switching. Depending on the frequency of the applied field, the director realigns either toward the homeotropic state (perpendicular to the substrates) or toward the planar state (parallel to the substrates), which allows one to control not only the absolute value of the focal length but also its sign. Optical performance of the liquid-crystal lens is close to that of an ideal thin lens.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection

I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen
Opt. Express 4(11) 432-442 (1999)

Polymer-stabilized liquid crystal for tunable microlens applications

Vladimir V. Presnyakov, Karen E. Asatryan, Tigran V. Galstian, and Amir Tork
Opt. Express 10(17) 865-870 (2002)

Liquid-crystal lens with a focal length that is variable in a wide range

Mao Ye, Bin Wang, and Susumu Sato
Appl. Opt. 43(35) 6407-6412 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription