Abstract

Two types of novel solid immersion lens are designed and investigated theoretically using the vector diffraction theory. The advantages of these so-called high-performance supersphere solid immersion lenses (HPSILs) are that they can improve the Strehl ratio of the focused spot and increase the focal depth of near-field optical systems. Both the spot size and the sidelobe intensity are not increased, however, compared with those of the standard Weierstrass solid immersion lens. These HPSILs will be useful for near-field optical data storage and photolithography.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  2. B. D. Terris, H. J. Mamin, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  3. Y. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
    [CrossRef]
  4. V. Zwiller and G. Björk. "Improved light extraction from emitters in high refractive index materials using solid immersion lenses," J. Appl. Phys. 92, 660-664 (2002).
    [CrossRef]
  5. S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, and M. S. Ünlü, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
    [CrossRef]
  6. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
    [CrossRef]
  7. J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
    [CrossRef]
  8. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
    [CrossRef]
  9. B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
    [CrossRef]
  10. A. Chekanov, M. Birukawa, Y. Itoh, and T. Suzuki, "'Contact' solid immersion lens near-field optical recording in magneto-optical TbFeCo media," J. Appl. Phys. 85, 5324-5326 (1999).
    [CrossRef]
  11. M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, "Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures," Appl. Phys. Lett. 73, 635-637 (1998).
    [CrossRef]
  12. H. Zhao, B. D. Don, S. Moehl, and H. Kalt, "Spatiotemporal dynamics of quantum-well excitons," Phys. Rev. B 67, 035306 (2003).
    [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), p. 283.
  14. Y. Zhang, W. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
    [CrossRef]
  15. L. E. Helseth, "Roles of polarization, phase, and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
    [CrossRef]
  16. Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75 (2004).
    [CrossRef]
  17. P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Opt. 36, 2305-2312 (1997).
    [CrossRef] [PubMed]

2005 (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

2004 (4)

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, and M. S. Ünlü, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Y. Zhang, W. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75 (2004).
[CrossRef]

2003 (1)

H. Zhao, B. D. Don, S. Moehl, and H. Kalt, "Spatiotemporal dynamics of quantum-well excitons," Phys. Rev. B 67, 035306 (2003).
[CrossRef]

2002 (2)

Y. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

V. Zwiller and G. Björk. "Improved light extraction from emitters in high refractive index materials using solid immersion lenses," J. Appl. Phys. 92, 660-664 (2002).
[CrossRef]

2001 (1)

L. E. Helseth, "Roles of polarization, phase, and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

1999 (2)

A. Chekanov, M. Birukawa, Y. Itoh, and T. Suzuki, "'Contact' solid immersion lens near-field optical recording in magneto-optical TbFeCo media," J. Appl. Phys. 85, 5324-5326 (1999).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

1998 (1)

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, "Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures," Appl. Phys. Lett. 73, 635-637 (1998).
[CrossRef]

1997 (1)

1996 (1)

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

1994 (1)

B. D. Terris, H. J. Mamin, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

1990 (1)

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Akiyama, H.

Y. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, "Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures," Appl. Phys. Lett. 73, 635-637 (1998).
[CrossRef]

Baba, M.

Y. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, "Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures," Appl. Phys. Lett. 73, 635-637 (1998).
[CrossRef]

Birukawa, M.

A. Chekanov, M. Birukawa, Y. Itoh, and T. Suzuki, "'Contact' solid immersion lens near-field optical recording in magneto-optical TbFeCo media," J. Appl. Phys. 85, 5324-5326 (1999).
[CrossRef]

Björk, G.

V. Zwiller and G. Björk. "Improved light extraction from emitters in high refractive index materials using solid immersion lenses," J. Appl. Phys. 92, 660-664 (2002).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), p. 283.

Chekanov, A.

A. Chekanov, M. Birukawa, Y. Itoh, and T. Suzuki, "'Contact' solid immersion lens near-field optical recording in magneto-optical TbFeCo media," J. Appl. Phys. 85, 5324-5326 (1999).
[CrossRef]

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

Don, B. D.

H. Zhao, B. D. Don, S. Moehl, and H. Kalt, "Spatiotemporal dynamics of quantum-well excitons," Phys. Rev. B 67, 035306 (2003).
[CrossRef]

Elings, V. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

Eraslan, M. G.

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, and M. S. Ünlü, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, and M. S. Ünlü, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Helseth, L. E.

L. E. Helseth, "Roles of polarization, phase, and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Ippolito, S. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, and M. S. Ünlü, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Itoh, Y.

A. Chekanov, M. Birukawa, Y. Itoh, and T. Suzuki, "'Contact' solid immersion lens near-field optical recording in magneto-optical TbFeCo media," J. Appl. Phys. 85, 5324-5326 (1999).
[CrossRef]

Kalt, H.

H. Zhao, B. D. Don, S. Moehl, and H. Kalt, "Spatiotemporal dynamics of quantum-well excitons," Phys. Rev. B 67, 035306 (2003).
[CrossRef]

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

B. D. Terris, H. J. Mamin, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Koyama, K.

Y. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

Liu, S. G.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Mamin, H. J.

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

B. D. Terris, H. J. Mamin, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

Moehl, S.

H. Zhao, B. D. Don, S. Moehl, and H. Kalt, "Spatiotemporal dynamics of quantum-well excitons," Phys. Rev. B 67, 035306 (2003).
[CrossRef]

Pitter, M. C.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

Sasaki, T.

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, "Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures," Appl. Phys. Lett. 73, 635-637 (1998).
[CrossRef]

See, C. W.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Somekh, M. G.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Suzuki, T.

A. Chekanov, M. Birukawa, Y. Itoh, and T. Suzuki, "'Contact' solid immersion lens near-field optical recording in magneto-optical TbFeCo media," J. Appl. Phys. 85, 5324-5326 (1999).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

B. D. Terris, H. J. Mamin, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Thorne, S. A.

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, and M. S. Ünlü, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Török, P.

Ünlü, M. S.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, and M. S. Ünlü, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Varga, P.

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), p. 283.

Xiao, H.

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75 (2004).
[CrossRef]

Yoshita, M.

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, "Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures," Appl. Phys. Lett. 73, 635-637 (1998).
[CrossRef]

Yoshita, Y.

Y. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

Zhang, J.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Zhang, Y.

Y. Zhang, W. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75 (2004).
[CrossRef]

Zhao, H.

H. Zhao, B. D. Don, S. Moehl, and H. Kalt, "Spatiotemporal dynamics of quantum-well excitons," Phys. Rev. B 67, 035306 (2003).
[CrossRef]

Zheng, C.

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75 (2004).
[CrossRef]

Zheng, W.

Y. Zhang, W. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Zou, Y.

Y. Zhang, W. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Zwiller, V.

V. Zwiller and G. Björk. "Improved light extraction from emitters in high refractive index materials using solid immersion lenses," J. Appl. Phys. 92, 660-664 (2002).
[CrossRef]

Appl. Aphys. Lett. (1)

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Aphys. Lett. 74, 501-503 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, "Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures," Appl. Phys. Lett. 73, 635-637 (1998).
[CrossRef]

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, and M. S. Ünlü, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

J. Appl. Phys. (4)

Y. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

V. Zwiller and G. Björk. "Improved light extraction from emitters in high refractive index materials using solid immersion lenses," J. Appl. Phys. 92, 660-664 (2002).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

A. Chekanov, M. Birukawa, Y. Itoh, and T. Suzuki, "'Contact' solid immersion lens near-field optical recording in magneto-optical TbFeCo media," J. Appl. Phys. 85, 5324-5326 (1999).
[CrossRef]

New J. Phys. (1)

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75 (2004).
[CrossRef]

Opt. Commun. (1)

L. E. Helseth, "Roles of polarization, phase, and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Optik (1)

Y. Zhang, W. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Phys. Rev. B (1)

H. Zhao, B. D. Don, S. Moehl, and H. Kalt, "Spatiotemporal dynamics of quantum-well excitons," Phys. Rev. B 67, 035306 (2003).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), p. 283.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Supersphere SIL system.

Fig. 2
Fig. 2

(a) Transverse and (b) axial intensity distributions for the type-1 HPSIL with R = Rw + λ and A = Aw (solid curve), the type-2 HPSIL with R = Rw and A = Aw − 0.6λ (dotted curve) compared with the case of the common WSIL (R = Rw and A = Aw , dashed curve), where the position parameter is L = Lw.

Fig. 3
Fig. 3

(a) Spot size, (b) Strehl ratio, (c) sidelobe intensity, and (d) focal depth versus the RRw , where A = Aw , and L = Lw are kept unchanged.

Fig. 4
Fig. 4

The aberration versus the effective converging angle of θ2 where A = Aw and L = Lw are kept unchanged.

Fig. 5
Fig. 5

(a) Spot size, (b) Strehl ratio, (c) sidelobe intensity, and (d) focal depth versus the AAw , where R = Rw and L = Lw are kept unchanged.

Fig. 6
Fig. 6

(a) Spot size, (b) Strehl ratio, (c) sidelobe intensity, and (d) focal depth versus the LLw. The dash–dot curves show where the values of D, S, M, and D are the same as those of the common WSIL, respectively. The solid curve corresponds to the common WSIL with R = Rw and A = Aw , the dashed curve the type-1 HPSIL with R = Rw + λ and A = Aw , and the dotted curve the type-2 HPSIL with R = Rw and A = Aw − λ∕2.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E = 0 θ 2 , max d θ 2 0 2 π A ( θ 1 , φ ) exp ( i k 3 z c cos θ 3 ) × exp [ i k 2 ρ c sin θ 2 cos ( φ φ c ) ] × exp ( i ψ G ) sin θ 2 d θ 2 d φ ,
θ 2 , max = α + arcsin ( A R n 2 sin θ 2 , max n 1 ) arcsin ( A R sin θ 2 , max ) .
A ( θ 1 , φ ) = P ( θ 1 , φ ) cos θ 1 ,
P ( θ 1 , φ ) = [ t 1 p t 2 p cos φ ( a cos φ + b sin φ ) cos Θ t 1 s t 2 s sin φ ( a sin φ + b cos φ ) t 1 p t 2 p sin φ ( a cos φ + b sin φ ) cos Θ + t 1 s t 2 s cos φ ( a sin φ + b cos φ ) t 1 p t 2 p ( a cos φ + b sin φ ) sin Θ ] ,
Θ = θ 1 + β 1 + θ 3 β 2 θ 2 , β 1 = arcsin ( A n 2 sin θ 2 / R n 1 ) , β 2 = arcsin ( A sin θ 2 / R ) , θ 1 = θ 2 β 1 + β 2 , θ 3 = arcsin ( n 2 sin θ 2 / n 3 ) .
P 0 = [ a ( θ 1 , φ ) b ( θ 1 , φ ) 0 ] .
P ( θ 1 , φ ) = [ t 1 p t 2 p cos φ cos Θ t 1 p t 2 p sin φ cos Θ t 1 p t 2 p sin Θ ] .
ψ G = k 0 { R ( n 1 n 2 ) + n 2 A ( cos θ 2 1 ) + n 1 L + n 2 R 2 A 2 sin 2 θ 2 n 1 R 2 + L 2 + 2 L [ A sin 2 θ 2 + cos θ 2 R 2 A 2 sin 2 θ 2 ] } .
E x = i I 1 cos φ c , E y = i I 1 sin φ c , E z = 2 I 0 ,
I 1 = 0 θ 2 , max t 1 p t 2 p cos θ 1 sin θ 2 cos Θ exp ( i k 3 z C cos θ 3 ) × exp ( i ψ G ) J 1 ( k 2 ρ C sin θ 2 ) d θ 2 ,
I 0 = 0 θ 2 , max t 1 p t 2 p cos θ 1 sin θ 2 sin Θ exp ( i k 3 z C cos θ 3 ) × exp ( i ψ G ) J 0 ( k 2 ρ C sin θ 2 ) d θ 2 ,
E ρ = i 0 θ 2 , max t 1 p t 2 p cos θ 1 sin θ 2 cos Θ exp ( i k 3 z C cos θ 3 ) × exp ( i ψ G ) J 1 ( k 2 ρ C sin θ 2 ) d θ 2 , E z = 2 0 θ 2 , max t 1 p t 2 p cos θ 1 sin θ 2 sin Θ exp ( i k 3 z C cos θ 3 ) × exp ( i ψ G ) J 0 ( k 2 ρ C sin θ 2 ) d θ 2 .

Metrics