Abstract

Scattering in biological tissue can degrade imaging contrast and reduce the probe depth. Polarization-based measurement has shown its advantages in overcoming such drawbacks. Here, linear and circular polarization degree imaging is applied to a comblike metal target submerged in Intralipid solutions. Contrasts of the metal bars are measured quantitatively as functions of the Intralipid concentration and the submersion depths. Different behaviors in contrast for linear and circular polarizations are compared. Contributions to the background of circular polarization degree images by backscattering, snake, and diffusive photons are examined carefully.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
    [CrossRef] [PubMed]
  2. S. G. Demos and R. R. Alfano, "Temporal gating in highly scattering media by the degree of optical polarization," Opt. Lett. 21, 161-163 (1996).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  4. B. R. Masters and P. T. C. So, "Confocal microscopy and multi-photon excitation microscopy of human skin in vivo," Opt. Express 8, 2-10 (2001); http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  5. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, "Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium," Opt. Lett. 20, 1498-1500 (1995).
    [CrossRef] [PubMed]
  6. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
    [CrossRef] [PubMed]
  7. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
    [CrossRef]
  8. A. N. Yaroslavsky, V. Neel, and R. R. Anderson, "Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging," J. Investig. Dermatol. 121, 259-266 (2003).
    [CrossRef] [PubMed]
  9. X. D. Wang and L. H. V. Wang, "Propagation of polarized light in birefringent turbid media: time-resolved simulations," Opt. Express 9, 254-259 (2001); http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  10. I. M. Stockford, S. P. Morgan, P. C. Y. Chang, and J. G. Walker, "Analysis of the spatial distribution of polarized light backscattered from layered scattering media," J. Biomed. Opt. 7, 313-320 (2002).
    [CrossRef] [PubMed]
  11. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phy. Rev. B 40, 9342-9345 (1989).
    [CrossRef]
  12. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers:influence of the size parameter," Phy. Rev. E 49, 1767-1770 (1994).
    [CrossRef]
  13. S. P. Morgan and M. E. Ridgway, "Polarization properties of light backscattered from a two layer scattering medium," Opt. Express 7, 395-402 (2000); http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  14. V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
    [CrossRef] [PubMed]
  15. G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Commun. 241, 255-261 (2004).
    [CrossRef]
  16. X. H. Ni and R. R. Alfano, "Time-resolved backscattering of circularly and linearly polarized light in a turbid medium," Opt. Lett. 29, 2773-2775 (2004).
    [CrossRef] [PubMed]
  17. S. A. Kartazayeva, X. H. Ni, and R. R. Alfano, "Backscattering target detection in a turbid medium by use of circularly and linearly polarized light," Opt. Lett. 30, 1168-1170 (2005).
    [CrossRef] [PubMed]
  18. R. Nothdurft and G. Yao, "Expression of target optical properties in subsurface polarization-gated imaging," Opt. Express 13, 4185-4195 (2005); http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  19. H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers," Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]

2005 (2)

2004 (2)

G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Commun. 241, 255-261 (2004).
[CrossRef]

X. H. Ni and R. R. Alfano, "Time-resolved backscattering of circularly and linearly polarized light in a turbid medium," Opt. Lett. 29, 2773-2775 (2004).
[CrossRef] [PubMed]

2003 (1)

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, "Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging," J. Investig. Dermatol. 121, 259-266 (2003).
[CrossRef] [PubMed]

2002 (2)

I. M. Stockford, S. P. Morgan, P. C. Y. Chang, and J. G. Walker, "Analysis of the spatial distribution of polarized light backscattered from layered scattering media," J. Biomed. Opt. 7, 313-320 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (2)

1999 (2)

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers:influence of the size parameter," Phy. Rev. E 49, 1767-1770 (1994).
[CrossRef]

1991 (1)

1989 (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phy. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Alfano, R. R.

Anderson, R. R.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, "Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging," J. Investig. Dermatol. 121, 259-266 (2003).
[CrossRef] [PubMed]

Backman, V.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Badizadegan, K.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers:influence of the size parameter," Phy. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers:influence of the size parameter," Phy. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Chang, P. C. Y.

I. M. Stockford, S. P. Morgan, P. C. Y. Chang, and J. G. Walker, "Analysis of the spatial distribution of polarized light backscattered from layered scattering media," J. Biomed. Opt. 7, 313-320 (2002).
[CrossRef] [PubMed]

Dasari, R. R.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Demos, S. G.

Feld, M. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Ho, P. P.

Itzkan, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Itzkan, L.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Jacques, S. L.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Kartazayeva, S. A.

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Liang, X.

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phy. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Maitland, D. J.

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers:influence of the size parameter," Phy. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Masters, B. R.

Moes, C. J. M.

Morgan, S. P.

I. M. Stockford, S. P. Morgan, P. C. Y. Chang, and J. G. Walker, "Analysis of the spatial distribution of polarized light backscattered from layered scattering media," J. Biomed. Opt. 7, 313-320 (2002).
[CrossRef] [PubMed]

S. P. Morgan and M. E. Ridgway, "Polarization properties of light backscattered from a two layer scattering medium," Opt. Express 7, 395-402 (2000); http://www.opticsexpress.org.
[CrossRef] [PubMed]

Neel, V.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, "Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging," J. Investig. Dermatol. 121, 259-266 (2003).
[CrossRef] [PubMed]

Ni, X. H.

Nothdurft, R.

Perelman, L. T.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phy. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Prahl, S. A.

Ridgway, M. E.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Sankaran, V.

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers:influence of the size parameter," Phy. Rev. E 49, 1767-1770 (1994).
[CrossRef]

So, P. T. C.

Stockford, I. M.

I. M. Stockford, S. P. Morgan, P. C. Y. Chang, and J. G. Walker, "Analysis of the spatial distribution of polarized light backscattered from layered scattering media," J. Biomed. Opt. 7, 313-320 (2002).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. G.

Walker, J. G.

I. M. Stockford, S. P. Morgan, P. C. Y. Chang, and J. G. Walker, "Analysis of the spatial distribution of polarized light backscattered from layered scattering media," J. Biomed. Opt. 7, 313-320 (2002).
[CrossRef] [PubMed]

Walsh, J. T.

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

Wang, L.

Wang, L. H. V.

Wang, Q. Z.

Wang, X. D.

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phy. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Yao, G.

Yaroslavsky, A. N.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, "Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging," J. Investig. Dermatol. 121, 259-266 (2003).
[CrossRef] [PubMed]

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phy. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

J. Biomed. Opt. (2)

I. M. Stockford, S. P. Morgan, P. C. Y. Chang, and J. G. Walker, "Analysis of the spatial distribution of polarized light backscattered from layered scattering media," J. Biomed. Opt. 7, 313-320 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

J. Investig. Dermatol. (1)

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, "Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging," J. Investig. Dermatol. 121, 259-266 (2003).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Nature Medicine (1)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Medicine 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Yao, "Differential optical polarization imaging in turbid media with different embedded objects," Opt. Commun. 241, 255-261 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phy. Rev. B (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, "Polarization memory of multiply scattered light," Phy. Rev. B 40, 9342-9345 (1989).
[CrossRef]

Phy. Rev. E (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers:influence of the size parameter," Phy. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of experimental setup for polarization degree imaging.

Fig. 2
Fig. 2

(a) Imaging target and (b) its alignment in the media.

Fig. 3
Fig. 3

Comparison between intensity images and polarization-degree images in linear and circular illumination. (a) Intensity distributions of HH and LR. (b) Polarization degree distributions of PL and PC. The curves are calculated by averaging ten vertical pixels at the center of the images.

Fig. 4
Fig. 4

Contrast plots of five bars under (a) linearly and (b) circularly polarized illumination with different Intralipid concentrations.

Fig. 5
Fig. 5

Background baseline at all concentrations.

Fig. 6
Fig. 6

(a) Polarization degree profiles of the background as functions of Intralipid concentrations. (b) Simple model for different scattering photons' effective areas; (A) refers to large-angle scattering photons, (B) refers to forward-scattering snake photons, and (C) refers to multiple-scattering diffusive photons under circular incidence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P = I c o I c r I c o + I c r ,
contrast = | i tar i bg i tar + i bg | .

Metrics