Abstract

Assessing tissue birefringence with imaging modality polarization-sensitive optical coherence tomography (PS-OCT) could improve the characterization of in vivo tissue pathology. Among the birefringent components, collagen may provide invaluable clinical information because of its alteration in disorders ranging from myocardial infarction to arthritis. But the features required of clinical imaging modality in these areas usually include the ability to assess the parameter of interest rapidly and without extensive data analysis, the characteristics that single-detector PS-OCT demonstrates. But beyond detecting organized collagen, which has been previously demonstrated and confirmed with the appropriate histological techniques, additional information can potentially be gained with PS-OCT, including collagen type, form versus intrinsic birefringence, the collagen angle, and the presence of multiple birefringence materials. In part I, we apply the simple but powerful fast-Fourier transform (FFT) to both PS-OCT mathematical modeling and in vitro bovine meniscus for improved PS-OCT data analysis. The FFT analysis yields, in a rapid, straightforward, and easily interpreted manner, information on the presence of multiple birefringent materials, distinguishing the true anatomical structure from patterns in image resulting from alterations in the polarization state and identifying the tissue∕phantom optical axes. Therefore the use of the FFT analysis of PS-OCT data provides information on tissue composition beyond identifying the presence of organized collagen in real time and directly from the image without extensive mathematical manipulation or data analysis. In part II, Helistat phantoms (collagen type I) are analyzed with the ultimate goal of improved tissue characterization. This study, along with the data in part I, advance the insights gained from PS-OCT images beyond simply determining the presence or absence of birefringence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
    [PubMed]
  2. W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
    [PubMed]
  3. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  4. J. F. deBoer, T. E. Milner, M. J. C. vanGemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef]
  5. K. D. Brandt, Textbook of Rheumatology, W. N. Kelly, E. D. Harris, Jr., S. Ruddy, and C. B. Sledge, eds. (Saunders, 1989), pp. 1480-1500.
  6. S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
    [CrossRef] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  8. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
    [PubMed]
  9. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner," Appl. Opt. 42, 4606-4611 (2003).
    [CrossRef] [PubMed]
  10. S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).
  11. B. Liu, M. Harman, and M. E. Brezinski, "Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms," J. Opt. Soc. Am. A 22, 262-271 (2005).
    [CrossRef]
  12. M. Wolman and F. H. Kasten, "Polarized-light microscopy in the study of the molecular structure of collagen and reticulin," Histochemistry 85, 41-49 (1986).
    [CrossRef] [PubMed]
  13. S. Huard, "Polarized Optical Waves," in Polarization of Light (Wiley, 1997), pp. 1-33.
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), pp. 554-568.
  15. E. Hecht, Optics/Eugene Hecht (Addison-Wesley, 1998).
  16. L. C. U. Junqueira, G. S. Montes, and E. M. Sanchez, "The influence of tissue section thickness on the study of collagen by the picrosirius-polarization method," Histochemistry 74, 153-156 (1982).
    [CrossRef] [PubMed]
  17. M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984).
    [PubMed]
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  19. H. A. Eriksen, A. Pajala, J. Leppilahti, and J. Risteli, "Increased content of type III collagen at the rupture site of human Achilles tendon," J. Orthopaed. Res. 20, 1352-1357 (2002).
    [CrossRef]
  20. W. Petersen and B. Tillmann, "Collagenous fibril texture of the human knee joint menisci," Anat. Embryol. 197, 317-324 (1998).
    [CrossRef] [PubMed]
  21. Y. E. Yarker, R. M. Aspden, and D. W. L. Hukins, "Birefringence of articular cartilage and the distribution of collagen fibril orientations," Connect. Tissue Res. 11, 207-213 (1983).
    [CrossRef] [PubMed]
  22. S. Huard, "Polarized optical waves," in Polarization of Light (Wiley, 1997), pp. 1-33.
  23. W. Folkhard, E. Knorzer, E. Mosler, and T. Nemetschek, "Packing of collagen molecules modified with 2-propanol," J. Mol. Biol. 177, 841-844 (1984).
    [CrossRef] [PubMed]
  24. R. D. B. Fraser, T. P. Macrae, A. Miller, and E. Suzuki, "Molecular conformation and packing in collagen fibrils," J. Mol. Biol. 167, 497-521 (1983).
    [CrossRef] [PubMed]
  25. E. R. Pimentel, "Form birefringence of collagen bundles," Acta Histochem. Cytochem. 14, 35-40 (1981).
    [CrossRef]
  26. D. P. Speer and L. Dahners, "Collagenous architecture of articular cartilage--correlation of scanning electron microscopy and polarized-light microscopy observations," Clin. Orthopaedi. Related Res. 139, 267-275 (1979).

2006 (1)

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

2005 (1)

2003 (2)

A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner," Appl. Opt. 42, 4606-4611 (2003).
[CrossRef] [PubMed]

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

2002 (1)

H. A. Eriksen, A. Pajala, J. Leppilahti, and J. Risteli, "Increased content of type III collagen at the rupture site of human Achilles tendon," J. Orthopaed. Res. 20, 1352-1357 (2002).
[CrossRef]

2001 (1)

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

1999 (1)

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

1998 (1)

W. Petersen and B. Tillmann, "Collagenous fibril texture of the human knee joint menisci," Anat. Embryol. 197, 317-324 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1986 (1)

M. Wolman and F. H. Kasten, "Polarized-light microscopy in the study of the molecular structure of collagen and reticulin," Histochemistry 85, 41-49 (1986).
[CrossRef] [PubMed]

1984 (2)

M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984).
[PubMed]

W. Folkhard, E. Knorzer, E. Mosler, and T. Nemetschek, "Packing of collagen molecules modified with 2-propanol," J. Mol. Biol. 177, 841-844 (1984).
[CrossRef] [PubMed]

1983 (2)

R. D. B. Fraser, T. P. Macrae, A. Miller, and E. Suzuki, "Molecular conformation and packing in collagen fibrils," J. Mol. Biol. 167, 497-521 (1983).
[CrossRef] [PubMed]

Y. E. Yarker, R. M. Aspden, and D. W. L. Hukins, "Birefringence of articular cartilage and the distribution of collagen fibril orientations," Connect. Tissue Res. 11, 207-213 (1983).
[CrossRef] [PubMed]

1982 (1)

L. C. U. Junqueira, G. S. Montes, and E. M. Sanchez, "The influence of tissue section thickness on the study of collagen by the picrosirius-polarization method," Histochemistry 74, 153-156 (1982).
[CrossRef] [PubMed]

1981 (1)

E. R. Pimentel, "Form birefringence of collagen bundles," Acta Histochem. Cytochem. 14, 35-40 (1981).
[CrossRef]

1979 (1)

D. P. Speer and L. Dahners, "Collagenous architecture of articular cartilage--correlation of scanning electron microscopy and polarized-light microscopy observations," Clin. Orthopaedi. Related Res. 139, 267-275 (1979).

Adams, S. B.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

Aspden, R. M.

Y. E. Yarker, R. M. Aspden, and D. W. L. Hukins, "Birefringence of articular cartilage and the distribution of collagen fibril orientations," Connect. Tissue Res. 11, 207-213 (1983).
[CrossRef] [PubMed]

Boppart, S. A.

A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner," Appl. Opt. 42, 4606-4611 (2003).
[CrossRef] [PubMed]

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), pp. 554-568.

Bouma, B. E.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

Brandt, K. D.

K. D. Brandt, Textbook of Rheumatology, W. N. Kelly, E. D. Harris, Jr., S. Ruddy, and C. B. Sledge, eds. (Saunders, 1989), pp. 1480-1500.

Brezinski, M. E.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

B. Liu, M. Harman, and M. E. Brezinski, "Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms," J. Opt. Soc. Am. A 22, 262-271 (2005).
[CrossRef]

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Courtney, B.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

Dahners, L.

D. P. Speer and L. Dahners, "Collagenous architecture of articular cartilage--correlation of scanning electron microscopy and polarized-light microscopy observations," Clin. Orthopaedi. Related Res. 139, 267-275 (1979).

deBoer, J. F.

Drexler, W.

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Eriksen, H. A.

H. A. Eriksen, A. Pajala, J. Leppilahti, and J. Risteli, "Increased content of type III collagen at the rupture site of human Achilles tendon," J. Orthopaed. Res. 20, 1352-1357 (2002).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Folkhard, W.

W. Folkhard, E. Knorzer, E. Mosler, and T. Nemetschek, "Packing of collagen molecules modified with 2-propanol," J. Mol. Biol. 177, 841-844 (1984).
[CrossRef] [PubMed]

Fraser, R. D. B.

R. D. B. Fraser, T. P. Macrae, A. Miller, and E. Suzuki, "Molecular conformation and packing in collagen fibrils," J. Mol. Biol. 167, 497-521 (1983).
[CrossRef] [PubMed]

Fujimoto, G.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

Fujimoto, J. G.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Giattina, S.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Harman, M.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

B. Liu, M. Harman, and M. E. Brezinski, "Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms," J. Opt. Soc. Am. A 22, 262-271 (2005).
[CrossRef]

Hecht, E.

E. Hecht, Optics/Eugene Hecht (Addison-Wesley, 1998).

Hee, M. R.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Herrmann, J. M.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

Herz, P.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

Huang, D.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huard, S.

S. Huard, "Polarized Optical Waves," in Polarization of Light (Wiley, 1997), pp. 1-33.

S. Huard, "Polarized optical waves," in Polarization of Light (Wiley, 1997), pp. 1-33.

Hukins, D. W. L.

Y. E. Yarker, R. M. Aspden, and D. W. L. Hukins, "Birefringence of articular cartilage and the distribution of collagen fibril orientations," Connect. Tissue Res. 11, 207-213 (1983).
[CrossRef] [PubMed]

Izatt, J. A.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

Jesser, C.

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Jesser, C. A.

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

Junqueira, L. C. U.

L. C. U. Junqueira, G. S. Montes, and E. M. Sanchez, "The influence of tissue section thickness on the study of collagen by the picrosirius-polarization method," Histochemistry 74, 153-156 (1982).
[CrossRef] [PubMed]

Kasten, F. H.

M. Wolman and F. H. Kasten, "Polarized-light microscopy in the study of the molecular structure of collagen and reticulin," Histochemistry 85, 41-49 (1986).
[CrossRef] [PubMed]

Knorzer, E.

W. Folkhard, E. Knorzer, E. Mosler, and T. Nemetschek, "Packing of collagen molecules modified with 2-propanol," J. Mol. Biol. 177, 841-844 (1984).
[CrossRef] [PubMed]

Kovacs, L.

M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984).
[PubMed]

Lapis, K.

M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984).
[PubMed]

Leppilahti, J.

H. A. Eriksen, A. Pajala, J. Leppilahti, and J. Risteli, "Increased content of type III collagen at the rupture site of human Achilles tendon," J. Orthopaed. Res. 20, 1352-1357 (2002).
[CrossRef]

Li, X. D.

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Liu, B.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

B. Liu, M. Harman, and M. E. Brezinski, "Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms," J. Opt. Soc. Am. A 22, 262-271 (2005).
[CrossRef]

Lodge, M. B.

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Macrae, T. P.

R. D. B. Fraser, T. P. Macrae, A. Miller, and E. Suzuki, "Molecular conformation and packing in collagen fibrils," J. Mol. Biol. 167, 497-521 (1983).
[CrossRef] [PubMed]

Marks, D. L.

Martin, S.

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Martin, S. D.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

Miller, A.

R. D. B. Fraser, T. P. Macrae, A. Miller, and E. Suzuki, "Molecular conformation and packing in collagen fibrils," J. Mol. Biol. 167, 497-521 (1983).
[CrossRef] [PubMed]

Milner, T. E.

Montes, G. S.

L. C. U. Junqueira, G. S. Montes, and E. M. Sanchez, "The influence of tissue section thickness on the study of collagen by the picrosirius-polarization method," Histochemistry 74, 153-156 (1982).
[CrossRef] [PubMed]

Mosler, E.

W. Folkhard, E. Knorzer, E. Mosler, and T. Nemetschek, "Packing of collagen molecules modified with 2-propanol," J. Mol. Biol. 177, 841-844 (1984).
[CrossRef] [PubMed]

Nelson, J. S.

Nemetschek, T.

W. Folkhard, E. Knorzer, E. Mosler, and T. Nemetschek, "Packing of collagen molecules modified with 2-propanol," J. Mol. Biol. 177, 841-844 (1984).
[CrossRef] [PubMed]

Oldenburg, A. L.

Pajala, A.

H. A. Eriksen, A. Pajala, J. Leppilahti, and J. Risteli, "Increased content of type III collagen at the rupture site of human Achilles tendon," J. Orthopaed. Res. 20, 1352-1357 (2002).
[CrossRef]

Patel, N. A.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

Petersen, W.

W. Petersen and B. Tillmann, "Collagenous fibril texture of the human knee joint menisci," Anat. Embryol. 197, 317-324 (1998).
[CrossRef] [PubMed]

Pimentel, E. R.

E. R. Pimentel, "Form birefringence of collagen bundles," Acta Histochem. Cytochem. 14, 35-40 (1981).
[CrossRef]

Pitris, C.

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

Plummer, S.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Reynolds, J. J.

Risteli, J.

H. A. Eriksen, A. Pajala, J. Leppilahti, and J. Risteli, "Increased content of type III collagen at the rupture site of human Achilles tendon," J. Orthopaed. Res. 20, 1352-1357 (2002).
[CrossRef]

Roberts, M. J.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

Sanchez, E. M.

L. C. U. Junqueira, G. S. Montes, and E. M. Sanchez, "The influence of tissue section thickness on the study of collagen by the picrosirius-polarization method," Histochemistry 74, 153-156 (1982).
[CrossRef] [PubMed]

Saunders, K.

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Schaff, Z.

M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984).
[PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shortkroff, S.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

Southern, J. F.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

Speer, D. P.

D. P. Speer and L. Dahners, "Collagenous architecture of articular cartilage--correlation of scanning electron microscopy and polarized-light microscopy observations," Clin. Orthopaedi. Related Res. 139, 267-275 (1979).

Stamper, D.

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Stamper, D. L.

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Suzuki, E.

R. D. B. Fraser, T. P. Macrae, A. Miller, and E. Suzuki, "Molecular conformation and packing in collagen fibrils," J. Mol. Biol. 167, 497-521 (1983).
[CrossRef] [PubMed]

Swanson, E. A.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Szendroi, M.

M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984).
[PubMed]

Tearney, G. J.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

Tillmann, B.

W. Petersen and B. Tillmann, "Collagenous fibril texture of the human knee joint menisci," Anat. Embryol. 197, 317-324 (1998).
[CrossRef] [PubMed]

Vajta, G.

M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984).
[PubMed]

vanGemert, M. J. C.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), pp. 554-568.

Wolman, M.

M. Wolman and F. H. Kasten, "Polarized-light microscopy in the study of the molecular structure of collagen and reticulin," Histochemistry 85, 41-49 (1986).
[CrossRef] [PubMed]

Yarker, Y. E.

Y. E. Yarker, R. M. Aspden, and D. W. L. Hukins, "Birefringence of articular cartilage and the distribution of collagen fibril orientations," Connect. Tissue Res. 11, 207-213 (1983).
[CrossRef] [PubMed]

Acta Histochem. Cytochem. (1)

E. R. Pimentel, "Form birefringence of collagen bundles," Acta Histochem. Cytochem. 14, 35-40 (1981).
[CrossRef]

Acta Morphol. Hung. (1)

M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984).
[PubMed]

Anat. Embryol. (1)

W. Petersen and B. Tillmann, "Collagenous fibril texture of the human knee joint menisci," Anat. Embryol. 197, 317-324 (1998).
[CrossRef] [PubMed]

Appl. Opt. (1)

Circulation (1)

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996).
[PubMed]

Clin. Orthopaedi. Related Res. (1)

D. P. Speer and L. Dahners, "Collagenous architecture of articular cartilage--correlation of scanning electron microscopy and polarized-light microscopy observations," Clin. Orthopaedi. Related Res. 139, 267-275 (1979).

Connect. Tissue Res. (1)

Y. E. Yarker, R. M. Aspden, and D. W. L. Hukins, "Birefringence of articular cartilage and the distribution of collagen fibril orientations," Connect. Tissue Res. 11, 207-213 (1983).
[CrossRef] [PubMed]

Histochemistry (2)

L. C. U. Junqueira, G. S. Montes, and E. M. Sanchez, "The influence of tissue section thickness on the study of collagen by the picrosirius-polarization method," Histochemistry 74, 153-156 (1982).
[CrossRef] [PubMed]

M. Wolman and F. H. Kasten, "Polarized-light microscopy in the study of the molecular structure of collagen and reticulin," Histochemistry 85, 41-49 (1986).
[CrossRef] [PubMed]

Int. J. Cardiol. (1)

S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006)
[CrossRef] [PubMed]

Int. Orthopaed. (1)

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).

J. Mol. Biol. (2)

W. Folkhard, E. Knorzer, E. Mosler, and T. Nemetschek, "Packing of collagen molecules modified with 2-propanol," J. Mol. Biol. 177, 841-844 (1984).
[CrossRef] [PubMed]

R. D. B. Fraser, T. P. Macrae, A. Miller, and E. Suzuki, "Molecular conformation and packing in collagen fibrils," J. Mol. Biol. 167, 497-521 (1983).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Orthopaed. Res. (1)

H. A. Eriksen, A. Pajala, J. Leppilahti, and J. Risteli, "Increased content of type III collagen at the rupture site of human Achilles tendon," J. Orthopaed. Res. 20, 1352-1357 (2002).
[CrossRef]

J. Rheumatol. (2)

J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999).
[PubMed]

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Opt. Lett. (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (6)

K. D. Brandt, Textbook of Rheumatology, W. N. Kelly, E. D. Harris, Jr., S. Ruddy, and C. B. Sledge, eds. (Saunders, 1989), pp. 1480-1500.

S. Huard, "Polarized Optical Waves," in Polarization of Light (Wiley, 1997), pp. 1-33.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), pp. 554-568.

E. Hecht, Optics/Eugene Hecht (Addison-Wesley, 1998).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

S. Huard, "Polarized optical waves," in Polarization of Light (Wiley, 1997), pp. 1-33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematics of a typical PS-OCT. In the sample arm the origin of coordinates O S is set up at the sample surface; z is measured from O S. The origin of the coordinates in the reference arm O R is set up at a point from which the optical path to the coupler matches the optical path between O S and the coupler in the sample arm. The mirror position is set off from O R by zR.

Fig. 2
Fig. 2

Fast-Fourier transform of a multilayered computer phantom with different layer characteristics.

Fig. 3
Fig. 3

Fast-Fourier transform of a multilayered phantom imaged with different polarization controller positions.

Fig. 4
Fig. 4

A–D, Fast-Fourier transform of a single-slab phantom Fig. 4. E, F, continued.

Fig. 5
Fig. 5

Fast-Fourier transform of the system noise. The FFT of the measured system noise is shown to confirm that the oscillations are not due to noise. The potential noise sources with the OCT are classical noise (1∕f noise, thermal noise, dark current, photon excess noise, etc.) and quantum noise (vacuum fluctuations, photon pressure, electron–hole uncertainity, etc.). It can be seen that the FFT shows no higher spatial frequencies in the spectrum. Therefore the signals in Figs. 6–8 cannot be attributed to noise.

Fig. 6
Fig. 6

Fast-Fourier transform of bovine meniscus. As in Fig. 7 the B scan shows a relatively regular banding pattern. Here the A scans demonstrate relatively uniform peaks. The FFT shows no high-frequency spatial components. In the picrosirius-stained section, there are two observations. First, the sample is globally uniform with small collagen fibers as determined by the green color of the samples. In addition, there are some random bands not traveling parallel to the surface, which can be seen as drop out areas in the OCT images (internal arrows). The peaks do not represent noise as demonstrated in Fig. 7, but do represent additional birefringent material. This is further supported by the data in Fig. 8.

Fig. 7
Fig. 7

Fast-Fourier transform of bovine meniscus. The meniscus is distinct from that in Fig. 6 because, although the B scan is similar, the A scans show oscillations within them, which is confirmed by higher spatial frequencies in the FFT (arrows). In the picrosirius image there are two distinct types of collagen. Organized thinner fibers (green, type III collagen) below the surface of thicker fibers (yellow, type I) are most concentrated at the surface but also present loosely in the center of the slide. The peaks do not represent noise as demonstrated in Fig. 7, but do represent additional birefringent material. This is further supported by the data in Fig. 8.

Fig. 8
Fig. 8

Fast-Fourier transform of collagenase-treated meniscus. OCT imaging of a meniscus was performed before and after treatment with collagenase. It is seen in the B scans that the banding pattern begins to deteriorate after 48 h of treatment with collagenase. The axial numbers are pixels. In the FFT the loss in the banding pattern can be seen as a loss in a spatial-frequency peak (arrow).

Fig. 9
Fig. 9

Optical coherence tomography image of a Helistat examined with transmission histology and SEM. A, top image, PS-OCT image of the top side of a Helistat sponge; bottom image, collagen phantom stained with Picrosirius Red that identifies organized collagen. The top side of the sponge is composed of loosely packed collagen fibers that can be seen in the corresponding histology. B, SEM captured image of the top side of a Helistat sponge. In can be seen from the picrosirius image in particular that the number of collagen bundles are greater than those of the OCT image. This is not surprising since the average bundle thickness is 13.0 ± 4.6 μm, whereas the FWHM of the PSF is 12 μm.

Fig. 10
Fig. 10

Collagenase confirming phantom composition:A, Helistat sponge before and after the addition of collagenase. A reflector is initially 1 mm below the surface of the phantom. B, sponge imaged after 1 h of collagenase exposure. The arrows delineate the razor blade in the image.

Fig. 11
Fig. 11

Birefringence of type I collagen phantom in saline:Left, OCT images at three different polarization states showing the birefringence of the top side of the phantom. Right, bottom side of the same sponge. The top side of the phantom is composed of more loosely packed collagen fibers with less controlled orientation compared with the bottom. Both sides show polarization sensitivity.

Fig. 12
Fig. 12

Scans of the top and bottom of the phantom:Left, images representing the A scans from the top side of the Helistat suspended in saline at the two states that demonstrate birefringence. Right, A scans of the bottom side where again there are polarization sensitivity changes.

Fig. 13
Fig. 13

Influence of the external medium on birefringence. The three columns illustrate the Helistat backreflection intensity at different polarization states in mediums with different refractive indices:Left, column reflection within the tissue, which is polarization sensitive; middle, when ethanol substitutes for saline, the backscattering intensity decreases, but the polarization sensitivity is maintained; right, when oil with a high reflective index is used, the backreflection and birefringence are almost completely lost. The reflective index of nonbirefringent external material needs to be taken into account when interpreting PS-OCT data, but all three medium maintain polarization sensitivity.

Fig. 14
Fig. 14

Scan profiles of saline, ethanol, and oil. Left, scans of the control (saline) Helistat. Each A scan corresponds to the respective polarization state in Fig. 4. Middle, right, the Helistat when soaked with ethanol and oil, respectively. Saline is shown to have the highest backreflection profile compared with ethanol and oil. This could be due to saline having a larger reflective-index difference with the collagen bundles. Also, the saline graphs show the backreflection intensity profile of the A-scan changes with the different polarization states. This means that the saline and collagen bundle combination has a stronger polarization sensitivity. In contrast, ethanol and oil show less intensity to the change in the polarization state, since the backreflection profiles associated with the ethanol and oil are relatively low.

Fig. 15
Fig. 15

Angular dependence of PS-OCT helistat imaging. The OCT images of the Helistat phantom at various incident angles. The images were captured at four angles (0, 15, 45, and 60 deg). The polarization state of the incident light was kept constant. As seen in the images the intensity is angular dependent.

Fig. 16
Fig. 16

Angular dependence of the PS-OCT meniscus imaging. The OCT images of the bovine meniscus are shown at various incident angles. Images are captured at four angles (0, 15, 45, and 60 deg). The polarization state of the incident light is kept constant. As seen in the images the intensity is angular dependent.

Tables (1)

Tables Icon

Table 1 Effect of the Mediums on Rotary Power

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I D ( z R ) = I R + I S + I 0 4 ( 2 cos [ 2 π k 0 Δ n S ( k 0 ) z R ] M y [ z R n S ( k 0 ) ] + { M x [ z R n S ( k 0 ) ] M y [ z R n S ( k 0 ) ] } ) [ cos ( 4 π k 0 z R ) exp ( 4 ln 2 z R     2 Δ l     2 ) ] ,

Metrics