Abstract

The focusing characteristics of long-distance flying optics were studied systemically for TEMmn Gaussian beams. The results show that the ABCD law of parameter q can be extended to Gaussian modes of any order when waist radius w in the imaginary part of parameter q is replaced by Rayleigh range ZR of a certain resonator in the equation. The difference between the real focal length and the geometric focal length, defined as Δf, was calculated for laser applications. A novel self-adaptive optical system was demonstrated for precisely controlling the focusing characteristics of long-distance flying optics. Theoretical analyses and experimental results were consistent.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription