Abstract

We study optical losses in the single-mode fiber system with an all-optical switch based on the anisotropic acousto-optic (AO) TeO 2 2D deflector. It is shown, theoretically and experimentally, that the mismatch of the output-fiber mode profile and the switched optical beam shape depends significantly on the monochromaticity of the light beam and is determined by the frequency dispersion of the laser beam diffracted on a Bragg AO cell. A quantitative analysis of the dependence of the input optical losses on the spectral width of the light beam is presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Weverka, K. Wagner, R. McLeod, and K. Wu, "Low-loss acousto-optic photonic switch," in Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg and J. M. Pelegrino, eds. (Dekker, 1995), pp. 479-573.
  2. D. J. Blumenthal, R. J. Feuerstein, and J. R. Sauer, "First demonstration of multihop all-optical packet switching," IEEE Photon. Technol. Lett. 6, 457-460 (1994).
    [CrossRef]
  3. R. F. Kalman, L. Kazovsky, and J. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048-1051 (1992).
    [CrossRef]
  4. M. Yamaguchi, T. Yamamoto, and K.-I. Yukimatsu, "Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays," Appl. Opt. 33, 1337-1344 (1994).
    [CrossRef] [PubMed]
  5. H. Jordan, D. Lee, and K. Lee, "Serial array time slot interchangers and optical implementations," IEEE Trans. Comput. 43, 1309-1318 (1994).
    [CrossRef]
  6. W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, "Demonstration of a photonic space switch utilizing acousto-optic elements," Opt. Eng. 29, 183-190 (1990).
    [CrossRef]
  7. D. O. Harris and A. Vanderlugt, "Acousto-optic photonic switch," Opt. Lett. 14, 1177-1179 (1989).
    [CrossRef] [PubMed]
  8. D. O. Harris, "Multichannel acousto-optic crossbar switch," Appl. Opt. 30, 4245-4256 (1991).
    [CrossRef] [PubMed]
  9. D. O. Harris and A. VanderLugt, "Multichannel acousto-optic crossbar switch with arbitrary signal fan-out," Appl. Opt. 31, 1684-1686 (1992).
    [CrossRef] [PubMed]
  10. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  11. V. A. Shulgin, "Polarization-independent acoustooptic light switching system for single-mode fiber communications," Russian Federation patent, Application priority data, 2004 123 331 (2004).
  12. V. V. Slavinskaya, "Analysis of the acousto-optic switch parameters," presented at Acousto-Optics and Applications in Information and Telecommunication Systems, St. Petersburg, Russia, 14-18 September 2000.
  13. Pal Maak, Laszlo Jakab, Atilla Barocsi, and Peter Richter, "Improved design method for acousto-optic light deflectors," Opt. Commun. 172, 297-324 (1999).
    [CrossRef]
  14. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1976).
  15. L. N. Magdich and V. Ya. Molchanov, Acousto-Optic Devices and Their Applications (Gordon and Breach, 1989).
  16. V. I. Balakshy, V. N. Parygin and L. E. Chirkov, Physical Fundamentals of Acousto-Optics (Radio I Svyaz, 1985).
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  18. L. N. Magdich and V. Ya. Molchanov, "Diffraction of a divergent beam by intense acoustic waves," Opt. Spectrosc. 42, 299-302 (1977).
  19. N. Uchida, "Optical properties of single-crystal paratellurite (TeO2)," Phys. Rev. B 4, 3736-3745 (1971).
  20. Y. Ohmachi and N. Uchida, "Temperature dependence of elastic, dielectric and piezoelastic constants in TeO2 crystals," J. Appl. Phys. 41, 2307-2311 (1970).
    [CrossRef]

2000 (1)

V. V. Slavinskaya, "Analysis of the acousto-optic switch parameters," presented at Acousto-Optics and Applications in Information and Telecommunication Systems, St. Petersburg, Russia, 14-18 September 2000.

1999 (1)

Pal Maak, Laszlo Jakab, Atilla Barocsi, and Peter Richter, "Improved design method for acousto-optic light deflectors," Opt. Commun. 172, 297-324 (1999).
[CrossRef]

1994 (3)

M. Yamaguchi, T. Yamamoto, and K.-I. Yukimatsu, "Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays," Appl. Opt. 33, 1337-1344 (1994).
[CrossRef] [PubMed]

H. Jordan, D. Lee, and K. Lee, "Serial array time slot interchangers and optical implementations," IEEE Trans. Comput. 43, 1309-1318 (1994).
[CrossRef]

D. J. Blumenthal, R. J. Feuerstein, and J. R. Sauer, "First demonstration of multihop all-optical packet switching," IEEE Photon. Technol. Lett. 6, 457-460 (1994).
[CrossRef]

1992 (2)

R. F. Kalman, L. Kazovsky, and J. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048-1051 (1992).
[CrossRef]

D. O. Harris and A. VanderLugt, "Multichannel acousto-optic crossbar switch with arbitrary signal fan-out," Appl. Opt. 31, 1684-1686 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, "Demonstration of a photonic space switch utilizing acousto-optic elements," Opt. Eng. 29, 183-190 (1990).
[CrossRef]

1989 (1)

1971 (1)

N. Uchida, "Optical properties of single-crystal paratellurite (TeO2)," Phys. Rev. B 4, 3736-3745 (1971).

1970 (1)

Y. Ohmachi and N. Uchida, "Temperature dependence of elastic, dielectric and piezoelastic constants in TeO2 crystals," J. Appl. Phys. 41, 2307-2311 (1970).
[CrossRef]

Balakshy, V. I.

V. I. Balakshy, V. N. Parygin and L. E. Chirkov, Physical Fundamentals of Acousto-Optics (Radio I Svyaz, 1985).

Banwell, T. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, "Demonstration of a photonic space switch utilizing acousto-optic elements," Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Barocsi, Atilla

Pal Maak, Laszlo Jakab, Atilla Barocsi, and Peter Richter, "Improved design method for acousto-optic light deflectors," Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Blumenthal, D. J.

D. J. Blumenthal, R. J. Feuerstein, and J. R. Sauer, "First demonstration of multihop all-optical packet switching," IEEE Photon. Technol. Lett. 6, 457-460 (1994).
[CrossRef]

Cheng, S. S.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, "Demonstration of a photonic space switch utilizing acousto-optic elements," Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Chirkov, L. E.

V. I. Balakshy, V. N. Parygin and L. E. Chirkov, Physical Fundamentals of Acousto-Optics (Radio I Svyaz, 1985).

Feuerstein, R. J.

D. J. Blumenthal, R. J. Feuerstein, and J. R. Sauer, "First demonstration of multihop all-optical packet switching," IEEE Photon. Technol. Lett. 6, 457-460 (1994).
[CrossRef]

Goodman, J.

R. F. Kalman, L. Kazovsky, and J. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048-1051 (1992).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Harris, D. O.

Huang, P. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, "Demonstration of a photonic space switch utilizing acousto-optic elements," Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Jakab, Laszlo

Pal Maak, Laszlo Jakab, Atilla Barocsi, and Peter Richter, "Improved design method for acousto-optic light deflectors," Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Jordan, H.

H. Jordan, D. Lee, and K. Lee, "Serial array time slot interchangers and optical implementations," IEEE Trans. Comput. 43, 1309-1318 (1994).
[CrossRef]

Kalman, R. F.

R. F. Kalman, L. Kazovsky, and J. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048-1051 (1992).
[CrossRef]

Kazovsky, L.

R. F. Kalman, L. Kazovsky, and J. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048-1051 (1992).
[CrossRef]

Lee, D.

H. Jordan, D. Lee, and K. Lee, "Serial array time slot interchangers and optical implementations," IEEE Trans. Comput. 43, 1309-1318 (1994).
[CrossRef]

Lee, K.

H. Jordan, D. Lee, and K. Lee, "Serial array time slot interchangers and optical implementations," IEEE Trans. Comput. 43, 1309-1318 (1994).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Maak, Pal

Pal Maak, Laszlo Jakab, Atilla Barocsi, and Peter Richter, "Improved design method for acousto-optic light deflectors," Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Magdich, L. N.

L. N. Magdich and V. Ya. Molchanov, Acousto-Optic Devices and Their Applications (Gordon and Breach, 1989).

L. N. Magdich and V. Ya. Molchanov, "Diffraction of a divergent beam by intense acoustic waves," Opt. Spectrosc. 42, 299-302 (1977).

McLeod, R.

R. T. Weverka, K. Wagner, R. McLeod, and K. Wu, "Low-loss acousto-optic photonic switch," in Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg and J. M. Pelegrino, eds. (Dekker, 1995), pp. 479-573.

Molchanov, V. Ya.

L. N. Magdich and V. Ya. Molchanov, Acousto-Optic Devices and Their Applications (Gordon and Breach, 1989).

L. N. Magdich and V. Ya. Molchanov, "Diffraction of a divergent beam by intense acoustic waves," Opt. Spectrosc. 42, 299-302 (1977).

Ohmachi, Y.

Y. Ohmachi and N. Uchida, "Temperature dependence of elastic, dielectric and piezoelastic constants in TeO2 crystals," J. Appl. Phys. 41, 2307-2311 (1970).
[CrossRef]

Parygin, V. N.

V. I. Balakshy, V. N. Parygin and L. E. Chirkov, Physical Fundamentals of Acousto-Optics (Radio I Svyaz, 1985).

Reith, L. A.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, "Demonstration of a photonic space switch utilizing acousto-optic elements," Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Richter, Peter

Pal Maak, Laszlo Jakab, Atilla Barocsi, and Peter Richter, "Improved design method for acousto-optic light deflectors," Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Sauer, J. R.

D. J. Blumenthal, R. J. Feuerstein, and J. R. Sauer, "First demonstration of multihop all-optical packet switching," IEEE Photon. Technol. Lett. 6, 457-460 (1994).
[CrossRef]

Shulgin, V. A.

V. A. Shulgin, "Polarization-independent acoustooptic light switching system for single-mode fiber communications," Russian Federation patent, Application priority data, 2004 123 331 (2004).

Slavinskaya, V. V.

V. V. Slavinskaya, "Analysis of the acousto-optic switch parameters," presented at Acousto-Optics and Applications in Information and Telecommunication Systems, St. Petersburg, Russia, 14-18 September 2000.

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Stephens, W. E.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, "Demonstration of a photonic space switch utilizing acousto-optic elements," Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Uchida, N.

N. Uchida, "Optical properties of single-crystal paratellurite (TeO2)," Phys. Rev. B 4, 3736-3745 (1971).

Y. Ohmachi and N. Uchida, "Temperature dependence of elastic, dielectric and piezoelastic constants in TeO2 crystals," J. Appl. Phys. 41, 2307-2311 (1970).
[CrossRef]

VanderLugt, A.

Wagner, K.

R. T. Weverka, K. Wagner, R. McLeod, and K. Wu, "Low-loss acousto-optic photonic switch," in Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg and J. M. Pelegrino, eds. (Dekker, 1995), pp. 479-573.

Weverka, R. T.

R. T. Weverka, K. Wagner, R. McLeod, and K. Wu, "Low-loss acousto-optic photonic switch," in Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg and J. M. Pelegrino, eds. (Dekker, 1995), pp. 479-573.

Wu, K.

R. T. Weverka, K. Wagner, R. McLeod, and K. Wu, "Low-loss acousto-optic photonic switch," in Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg and J. M. Pelegrino, eds. (Dekker, 1995), pp. 479-573.

Yamaguchi, M.

Yamamoto, T.

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1976).

Yukimatsu, K.-I.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (2)

D. J. Blumenthal, R. J. Feuerstein, and J. R. Sauer, "First demonstration of multihop all-optical packet switching," IEEE Photon. Technol. Lett. 6, 457-460 (1994).
[CrossRef]

R. F. Kalman, L. Kazovsky, and J. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048-1051 (1992).
[CrossRef]

IEEE Trans. Comput. (1)

H. Jordan, D. Lee, and K. Lee, "Serial array time slot interchangers and optical implementations," IEEE Trans. Comput. 43, 1309-1318 (1994).
[CrossRef]

J. Appl. Phys. (1)

Y. Ohmachi and N. Uchida, "Temperature dependence of elastic, dielectric and piezoelastic constants in TeO2 crystals," J. Appl. Phys. 41, 2307-2311 (1970).
[CrossRef]

Opt. Commun. (1)

Pal Maak, Laszlo Jakab, Atilla Barocsi, and Peter Richter, "Improved design method for acousto-optic light deflectors," Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Opt. Eng. (1)

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, "Demonstration of a photonic space switch utilizing acousto-optic elements," Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

L. N. Magdich and V. Ya. Molchanov, "Diffraction of a divergent beam by intense acoustic waves," Opt. Spectrosc. 42, 299-302 (1977).

Other (9)

N. Uchida, "Optical properties of single-crystal paratellurite (TeO2)," Phys. Rev. B 4, 3736-3745 (1971).

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1976).

L. N. Magdich and V. Ya. Molchanov, Acousto-Optic Devices and Their Applications (Gordon and Breach, 1989).

V. I. Balakshy, V. N. Parygin and L. E. Chirkov, Physical Fundamentals of Acousto-Optics (Radio I Svyaz, 1985).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

V. A. Shulgin, "Polarization-independent acoustooptic light switching system for single-mode fiber communications," Russian Federation patent, Application priority data, 2004 123 331 (2004).

V. V. Slavinskaya, "Analysis of the acousto-optic switch parameters," presented at Acousto-Optics and Applications in Information and Telecommunication Systems, St. Petersburg, Russia, 14-18 September 2000.

R. T. Weverka, K. Wagner, R. McLeod, and K. Wu, "Low-loss acousto-optic photonic switch," in Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg and J. M. Pelegrino, eds. (Dekker, 1995), pp. 479-573.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup scheme: 1, laser diode; 2, fiber input; 3, collimation lens; 4, Bragg AO cells; 5, focusing lens; 6, fiber output array; 7, powermeter.

Fig. 2
Fig. 2

Diffraction efficiency as a function of acoustic frequency. Frequency range 53.125–100 MHz.

Fig. 3
Fig. 3

Momentum-space diagram for the AO interaction geometry used in the switch. The angle of acoustic rotation denoted as ΘAR.

Fig. 4
Fig. 4

Diffracted light power distribution near the receiving fiber center.

Fig. 5
Fig. 5

Normalized distribution of light intensity of the laser with a spectral width 5 nm: surface plot.

Fig. 6
Fig. 6

Normalized distribution of light intensity of the laser with a spectral width 0.2 nm: surface plot.

Tables (2)

Tables Icon

Table 1 Design Parameters of Experimental Setup

Tables Icon

Table 2 Dependence of Output Coupling Efficiency on Spectral Width of the Light Beam

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

r 0 = 2 λ F π d .
E in ( x , y , z ) = E 0 exp ( x 2 + y 2 d 2 ) e i ( k z sin θ 0 + k x cos θ 0 ω t ) ,
E in ( θ , ψ ) = π 4 E 0 d 2 exp [ π 2 n 0     2 d 2 4 λ 2 ( θ θ 0 ) 2 ] × exp ( π 2 n 0     2 d 2 4 λ 2 ψ 2 ) ,
E out ( θ , ψ ) = C exp [ π 2 n e     2 d 2 4 λ 2 ( θ θ 0 λ f 1 n e v ) 2 ] × exp [ π 2 n e     2 d 2 4 λ 2 ( ψ λ f 2 n e v ) 2 ] × sinc [ l q 1     2 4 π 2 + f 1     2 v 2 ( θ λ f 1 n e v θ B ) 2 ] × sinc [ l q 2     2 4 π 2 + f 2     2 v 2 ( ψ λ f 2 n e v ψ B ) 2 ] ,
E out ( x , y ) = C 1 exp [ π 2 n e     2 d 2 4 λ 2 ( x F θ 0 λ f 1 n e v ) 2 ] × exp [ π 2 n e     2 d 2 4 λ 2 ( y F λ f 2 n e v ) 2 ] × sinc [ l q 1     2 4 π 2 + f 1     2 v 2 ( x F λ f 1 n e v θ B ) 2 ] × sinc [ l q 2     2 4 π 2 + f 2     2 v 2 ( y F λ f 2 n e v ψ B ) 2 ] ,
E out ( x , y ) = C 1 ν exp [ π 2 n e     2 d 2 4 λ 2 ( x F θ 0 λ f 1 n e v ) 2 ] × exp [ π 2 n e     2 d 2 4 λ 2 ( y F λ f 2 n e v ) 2 ] × exp [ ( ν ν 0 ) 2 2 σ 2 ] × sinc [ l q 1     2 4 π 2 + f 1     2 v 2 ( x F λ f 1 n e v θ B ) 2 ] × sinc [ l q 2     2 4 π 2 + f 2     2 v 2 ( y F λ f 2 n e v ψ B ) 2 ] d ν ,
η OC = | E out ( x , y ) E guide ( x , y ) d x d y | 2 | E out ( x , y ) | 2  d x d y ,
E guide ( x , y ) = exp ( x 2 + y 2 4 r 0     2 ) .
η CT = | E out ( x , y ) E guide ( x r sep , y r sep ) d x d y | 2 | E out ( x , y ) | 2  d x d y ,

Metrics