Abstract

A nine-aperture, wide-field Fizeau imaging telescope has been built at the Lockheed–Martin Advanced Technology Center. The telescope consists of nine, 125  mm diameter collector telescopes coherently phased and combined to form a diffraction-limited image with a resolution that is consistent with the 610  mm diameter of the telescope. The phased field of view of the array is 1  μrad. The measured rms wavefront error is 0.08 waves rms at 635 nm. The telescope is actively controlled to correct for tilt and phasing errors. The control sensing technique is the method known as phase diversity, which extracts wavefront information from a pair of focused and defocused images. The optical design of the telescope and typical performance results are described.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Harvey and C. Ftaclas, "Field-of-view limitations of phased telescope arrays," Appl. Opt. 34, 5787-5798 (1995).
    [Crossref] [PubMed]
  2. W. A. Traub, "Combining beams from separated telescopes," Appl. Opt. 25, 528-532 (1986).
    [Crossref] [PubMed]
  3. R. L. Lucke, "Influence of Seidel distortion on combining beams from a phased telescope array," Appl. Opt. 38, 4776-4783 (1999).
    [Crossref]
  4. R. A. Gonsalves and R. Chidlaw, "Wavefront sensing by phase retrieval," in Applications of Digital Image Processing III, A.G.Tescher, ed., Proc. SPIE 207, 32-39 (1979).
  5. R. G. Paxman and J. R. Fienup, "Optical misalignment sensing and image reconstruction using phase diversity," J. Opt. Soc. Am. A 5, 914-923 (1988).
    [Crossref]
  6. R. L. Kendrick, D. S. Acton, and A. L. Duncan, "Phase-diversity wave-front sensor for imaging systems," Appl. Opt. 33, 6533-6546 (1994).
    [Crossref] [PubMed]
  7. R. G. Paxman, T. J. Schulz, and J. R. Fienup, "Joint estimation of object and aberrations by using phase diversity," J. Opt. Soc. Am. A 9, 1072-1085 (1992).
    [Crossref]
  8. J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, "Closed-loop wavefront sensing for a sparse-aperture multiple-telescope array using broadband phase diversity," in Proc. SPIE 4091, 48-63 (2000).
    [Crossref]
  9. A. B. Meinel, M. P. Meinel, and N. J. Woolf, "Multiple aperture telescope diffraction images," in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant eds. (Academic, 1983), Vol. 9, pp. 150-200.
  10. J. R. Fienup, "MTF and integration time versus fill factor for sparse-aperture imaging systems," in Proc. SPIE 4091, 43-47 (2000).
    [Crossref]
  11. C. W. Helstrom, "Image restoration by the method of least squares," J. Opt. Soc. Am. 57, 297-303 (1967).
    [Crossref]

2000 (2)

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, "Closed-loop wavefront sensing for a sparse-aperture multiple-telescope array using broadband phase diversity," in Proc. SPIE 4091, 48-63 (2000).
[Crossref]

J. R. Fienup, "MTF and integration time versus fill factor for sparse-aperture imaging systems," in Proc. SPIE 4091, 43-47 (2000).
[Crossref]

1999 (1)

1995 (1)

1994 (1)

1992 (1)

1988 (1)

1986 (1)

1967 (1)

Acton, D. S.

Benson, L.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, "Closed-loop wavefront sensing for a sparse-aperture multiple-telescope array using broadband phase diversity," in Proc. SPIE 4091, 48-63 (2000).
[Crossref]

Chidlaw, R.

R. A. Gonsalves and R. Chidlaw, "Wavefront sensing by phase retrieval," in Applications of Digital Image Processing III, A.G.Tescher, ed., Proc. SPIE 207, 32-39 (1979).

Duncan, A. L.

Fienup, J. R.

Ftaclas, C.

Gonsalves, R. A.

R. A. Gonsalves and R. Chidlaw, "Wavefront sensing by phase retrieval," in Applications of Digital Image Processing III, A.G.Tescher, ed., Proc. SPIE 207, 32-39 (1979).

Harvey, J. E.

Helstrom, C. W.

Kendrick, R. L.

Lucke, R. L.

Meinel, A. B.

A. B. Meinel, M. P. Meinel, and N. J. Woolf, "Multiple aperture telescope diffraction images," in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant eds. (Academic, 1983), Vol. 9, pp. 150-200.

Meinel, M. P.

A. B. Meinel, M. P. Meinel, and N. J. Woolf, "Multiple aperture telescope diffraction images," in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant eds. (Academic, 1983), Vol. 9, pp. 150-200.

Paxman, R. G.

Schulz, T. J.

Seldin, J. H.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, "Closed-loop wavefront sensing for a sparse-aperture multiple-telescope array using broadband phase diversity," in Proc. SPIE 4091, 48-63 (2000).
[Crossref]

Stone, R. E.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, "Closed-loop wavefront sensing for a sparse-aperture multiple-telescope array using broadband phase diversity," in Proc. SPIE 4091, 48-63 (2000).
[Crossref]

Traub, W. A.

Woolf, N. J.

A. B. Meinel, M. P. Meinel, and N. J. Woolf, "Multiple aperture telescope diffraction images," in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant eds. (Academic, 1983), Vol. 9, pp. 150-200.

Zarifis, V. G.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, "Closed-loop wavefront sensing for a sparse-aperture multiple-telescope array using broadband phase diversity," in Proc. SPIE 4091, 48-63 (2000).
[Crossref]

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Proc. SPIE (2)

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, "Closed-loop wavefront sensing for a sparse-aperture multiple-telescope array using broadband phase diversity," in Proc. SPIE 4091, 48-63 (2000).
[Crossref]

J. R. Fienup, "MTF and integration time versus fill factor for sparse-aperture imaging systems," in Proc. SPIE 4091, 43-47 (2000).
[Crossref]

Other (2)

A. B. Meinel, M. P. Meinel, and N. J. Woolf, "Multiple aperture telescope diffraction images," in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant eds. (Academic, 1983), Vol. 9, pp. 150-200.

R. A. Gonsalves and R. Chidlaw, "Wavefront sensing by phase retrieval," in Applications of Digital Image Processing III, A.G.Tescher, ed., Proc. SPIE 207, 32-39 (1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Front view of the STAR-9 multiple telescope array.

Fig. 2
Fig. 2

Optical schematic of one aperture in the STAR-9 distributed aperture imaging telescope.

Fig. 3
Fig. 3

Optical layout of the STAR-9 telescope.

Fig. 4
Fig. 4

Control system block diagram of operational mode with phase diversity.

Fig. 5
Fig. 5

Polychromatic point-spread function of STAR-9 shown with visible side lobes.

Fig. 6
Fig. 6

Modulation transfer function shown as calculated from an unresolved, monochromatic (λ = 635 nm) point source.

Fig. 7
Fig. 7

STAR-9 point-spread function shown as the alignment process progresses: (a) prior to alignment, (b) post tilt alignment, (c) after the apertures are coherently phased.

Fig. 8
Fig. 8

Scenes that correspond to the point-spread functions in Fig. 7: (a) prior to alignment, (b) post tilt alignment, (c) after phasing and post processing with a Wiener–Helstrom filter.

Fig. 9
Fig. 9

Open and closed loop rms wavefront error.

Metrics