Abstract

A nine-aperture, wide-field Fizeau imaging telescope has been built at the Lockheed–Martin Advanced Technology Center. The telescope consists of nine, 125  mm diameter collector telescopes coherently phased and combined to form a diffraction-limited image with a resolution that is consistent with the 610  mm diameter of the telescope. The phased field of view of the array is 1  μrad. The measured rms wavefront error is 0.08 waves rms at 635 nm. The telescope is actively controlled to correct for tilt and phasing errors. The control sensing technique is the method known as phase diversity, which extracts wavefront information from a pair of focused and defocused images. The optical design of the telescope and typical performance results are described.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription