Abstract

By removing the cladding on the outside of a bent single-mode optical fiber and exposing a surface at a radius smaller than that of the radiation caustic, the leaky nature of the propagating mode is almost suppressed, and bend loss is effectively eliminated. The practical realization of this effect is described, and a loop with a bend radius of 0.50 mm on standard telecommunications fiber is demonstrated with negligible loss.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Caspar and E.-J. Bachus, "Fibre-optic micro-ring-resonator with 2 mm diameter," Electron. Lett. 25, 1506-1508 (1989).
    [CrossRef]
  2. D. Stowe and F. Gillham, "Miniature fiber bends offer flexibility in component and circuit design," Lightwave (July 1998), pp. 60-61.
  3. D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunications fibers," Appl. Phys. Lett. 77, 3911-3913 (2000).
    [CrossRef]
  4. S. Tomljenovic-Hanic, J. D. Love, and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-223 (2002).
    [CrossRef]
  5. H. Nishihara, M. Haruna, and T. Suhara, "Optical waveguide lenses, switches and integrated circuits," in Optical Devices and Fibers, Y. Suematsu, ed. (North-Holland, 1983), pp. 167-183.
  6. R. A. Jarvis, J. D. Love, and F. Ladouceur, "Bend-radius reduction in planar waveguides using UV post tuning," Electron. Lett. 33, 891-894 (1997).
    [CrossRef]
  7. E. G. Heumann and W. Richer, "Sharp bends with low losses in dielectric optical waveguides," Appl. Opt. 22, 1016-1022 (1983).
    [CrossRef]
  8. T. A. Birks, K. P. Oakley, and C. D. Hussey, "Adiabaticity of miniature loops in tapered single-mode fibre," Electron. Lett. 28, 2034-2035 (1992).
    [CrossRef]
  9. "Product Information PI1036" (Corning Incorporated, 1999).
  10. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  11. D. Marcuse, "Field deformation and loss caused by curvature of optical fiber," J. Opt. Soc. Am. 66, 311-320 (1976).
    [CrossRef]
  12. C. D. Hussey and J. D. Minelly, "Optical fibre polishing with a motor driven polishing wheel," Electron. Lett. 24, 805-806 (1988).
    [CrossRef]
  13. S. L. Semjonov and C. R. Kurkjian, "Strength of silica optical fibers with micron size flaws," J. Non-Cryst. Solids 283, 220-224 (2001).
    [CrossRef]

2002 (1)

S. Tomljenovic-Hanic, J. D. Love, and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-223 (2002).
[CrossRef]

2001 (1)

S. L. Semjonov and C. R. Kurkjian, "Strength of silica optical fibers with micron size flaws," J. Non-Cryst. Solids 283, 220-224 (2001).
[CrossRef]

2000 (1)

D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunications fibers," Appl. Phys. Lett. 77, 3911-3913 (2000).
[CrossRef]

1997 (1)

R. A. Jarvis, J. D. Love, and F. Ladouceur, "Bend-radius reduction in planar waveguides using UV post tuning," Electron. Lett. 33, 891-894 (1997).
[CrossRef]

1992 (1)

T. A. Birks, K. P. Oakley, and C. D. Hussey, "Adiabaticity of miniature loops in tapered single-mode fibre," Electron. Lett. 28, 2034-2035 (1992).
[CrossRef]

1989 (1)

C. Caspar and E.-J. Bachus, "Fibre-optic micro-ring-resonator with 2 mm diameter," Electron. Lett. 25, 1506-1508 (1989).
[CrossRef]

1988 (1)

C. D. Hussey and J. D. Minelly, "Optical fibre polishing with a motor driven polishing wheel," Electron. Lett. 24, 805-806 (1988).
[CrossRef]

1983 (1)

1976 (1)

Ankiewicz, A.

S. Tomljenovic-Hanic, J. D. Love, and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-223 (2002).
[CrossRef]

Bachus, E.-J.

C. Caspar and E.-J. Bachus, "Fibre-optic micro-ring-resonator with 2 mm diameter," Electron. Lett. 25, 1506-1508 (1989).
[CrossRef]

Birks, T. A.

T. A. Birks, K. P. Oakley, and C. D. Hussey, "Adiabaticity of miniature loops in tapered single-mode fibre," Electron. Lett. 28, 2034-2035 (1992).
[CrossRef]

Caspar, C.

C. Caspar and E.-J. Bachus, "Fibre-optic micro-ring-resonator with 2 mm diameter," Electron. Lett. 25, 1506-1508 (1989).
[CrossRef]

Culshaw, B.

D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunications fibers," Appl. Phys. Lett. 77, 3911-3913 (2000).
[CrossRef]

Donlagic, D.

D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunications fibers," Appl. Phys. Lett. 77, 3911-3913 (2000).
[CrossRef]

Gillham, F.

D. Stowe and F. Gillham, "Miniature fiber bends offer flexibility in component and circuit design," Lightwave (July 1998), pp. 60-61.

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, "Optical waveguide lenses, switches and integrated circuits," in Optical Devices and Fibers, Y. Suematsu, ed. (North-Holland, 1983), pp. 167-183.

Heumann, E. G.

Hussey, C. D.

T. A. Birks, K. P. Oakley, and C. D. Hussey, "Adiabaticity of miniature loops in tapered single-mode fibre," Electron. Lett. 28, 2034-2035 (1992).
[CrossRef]

C. D. Hussey and J. D. Minelly, "Optical fibre polishing with a motor driven polishing wheel," Electron. Lett. 24, 805-806 (1988).
[CrossRef]

Jarvis, R. A.

R. A. Jarvis, J. D. Love, and F. Ladouceur, "Bend-radius reduction in planar waveguides using UV post tuning," Electron. Lett. 33, 891-894 (1997).
[CrossRef]

Kurkjian, C. R.

S. L. Semjonov and C. R. Kurkjian, "Strength of silica optical fibers with micron size flaws," J. Non-Cryst. Solids 283, 220-224 (2001).
[CrossRef]

Ladouceur, F.

R. A. Jarvis, J. D. Love, and F. Ladouceur, "Bend-radius reduction in planar waveguides using UV post tuning," Electron. Lett. 33, 891-894 (1997).
[CrossRef]

Love, J. D.

S. Tomljenovic-Hanic, J. D. Love, and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-223 (2002).
[CrossRef]

R. A. Jarvis, J. D. Love, and F. Ladouceur, "Bend-radius reduction in planar waveguides using UV post tuning," Electron. Lett. 33, 891-894 (1997).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Marcuse, D.

Minelly, J. D.

C. D. Hussey and J. D. Minelly, "Optical fibre polishing with a motor driven polishing wheel," Electron. Lett. 24, 805-806 (1988).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, "Optical waveguide lenses, switches and integrated circuits," in Optical Devices and Fibers, Y. Suematsu, ed. (North-Holland, 1983), pp. 167-183.

Oakley, K. P.

T. A. Birks, K. P. Oakley, and C. D. Hussey, "Adiabaticity of miniature loops in tapered single-mode fibre," Electron. Lett. 28, 2034-2035 (1992).
[CrossRef]

Richer, W.

Semjonov, S. L.

S. L. Semjonov and C. R. Kurkjian, "Strength of silica optical fibers with micron size flaws," J. Non-Cryst. Solids 283, 220-224 (2001).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Stowe, D.

D. Stowe and F. Gillham, "Miniature fiber bends offer flexibility in component and circuit design," Lightwave (July 1998), pp. 60-61.

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, "Optical waveguide lenses, switches and integrated circuits," in Optical Devices and Fibers, Y. Suematsu, ed. (North-Holland, 1983), pp. 167-183.

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic, J. D. Love, and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-223 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunications fibers," Appl. Phys. Lett. 77, 3911-3913 (2000).
[CrossRef]

Electron. Lett. (5)

S. Tomljenovic-Hanic, J. D. Love, and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-223 (2002).
[CrossRef]

C. Caspar and E.-J. Bachus, "Fibre-optic micro-ring-resonator with 2 mm diameter," Electron. Lett. 25, 1506-1508 (1989).
[CrossRef]

T. A. Birks, K. P. Oakley, and C. D. Hussey, "Adiabaticity of miniature loops in tapered single-mode fibre," Electron. Lett. 28, 2034-2035 (1992).
[CrossRef]

R. A. Jarvis, J. D. Love, and F. Ladouceur, "Bend-radius reduction in planar waveguides using UV post tuning," Electron. Lett. 33, 891-894 (1997).
[CrossRef]

C. D. Hussey and J. D. Minelly, "Optical fibre polishing with a motor driven polishing wheel," Electron. Lett. 24, 805-806 (1988).
[CrossRef]

J. Non-Cryst. Solids (1)

S. L. Semjonov and C. R. Kurkjian, "Strength of silica optical fibers with micron size flaws," J. Non-Cryst. Solids 283, 220-224 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (4)

"Product Information PI1036" (Corning Incorporated, 1999).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

D. Stowe and F. Gillham, "Miniature fiber bends offer flexibility in component and circuit design," Lightwave (July 1998), pp. 60-61.

H. Nishihara, M. Haruna, and T. Suhara, "Optical waveguide lenses, switches and integrated circuits," in Optical Devices and Fibers, Y. Suematsu, ed. (North-Holland, 1983), pp. 167-183.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Square of the refractive-index profile of the following: (a) straight fiber cross section; (b) bent fiber with the center of curvature located on the left-hand side of the figure; the radiation caustic is indicated as rR ; (c) bent fiber with the same bend radius of (b) but with the cladding removed on the outside of the bend to a radius rS ; (d) bent fiber with a smaller bend radius than that of (b), indicating the steeper profile and that more cladding needs to be removed if the mode is to remain bound.

Fig. 2
Fig. 2

SEM image of surface polished with 3 μm diamond grit (calibration bar is 20 μm).

Fig. 3
Fig. 3

SEM image of the surface in Fig. 1 after fire polishing (calibration bar is 20 μm).

Fig. 4
Fig. 4

Cross section of the polished fiber with 20 dB throughput loss (calibration bar is 20 μm).

Fig. 5
Fig. 5

Threshold bend radius versus distance of polished surface from the single-mode fiber axis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r R = W 2 a 2 k 2 2 n 2 2 R b ,

Metrics