Abstract

Due to their capability for supporting high-peak powers, large-core hollow optical fibers may be used to deliver high-peak-power nanosecond pulses for the fluid flow measurement technique of particle image velocimetry [Meas. Sci. Technol. 16, 1119 (2005)]. One drawback of using such fibers for fluid flow measurements is that the output suffers from a speckled interference pattern due to the fiber's multimode nature, which can lead to a loss of spatial information and reduced data quality. Presented here is a technique to reduce the speckle contrast from these fibers when delivering nanosecond pulses. Significant smoothing of the output intensity distribution is demonstrated, giving an improved source of illumination for fluid flow measurements and other imaging techniques requiring pulsed laser illumination.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Westerweel, "Fundamentals of digital particle image velocimetry," Meas. Sci. Technol. 8, 179-192 (1997).
    [CrossRef]
  2. T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
    [CrossRef]
  3. T. J. Stephens, M. J. Haste, D. P. Towers, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, "Fiber-optics delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement," Appl. Opt. 42, 4307-4314 (2003).
    [CrossRef] [PubMed]
  4. Y. Matsuura, G. Takada, Y. Yamamoto, Y.-W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).
    [CrossRef] [PubMed]
  5. T. J. Stephens, "Fiber-optic Delivery of High Peak Power Laser Pulses for Flow Measurement" Ph.D. dissertation (Heriot-Watt University, 2003).
  6. D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
    [CrossRef]
  7. P. J. Kajenski, P. L. Fuhr, and D. R. Huston, "Mode coupling and phase modulation in vibrating waveguides," J. Lightwave Technol. 10, 1297-1301 (1992).
    [CrossRef]
  8. B. Daino, G. Demarchis, and S. Piazzola, "Speckle and modal noise in optical fibers. Theory and experiment," Opt. Acta 27, 1151-1159 (1980).
    [CrossRef]
  9. H. Ambar, Y. Aoki, N. Takai, and T. Asakura, "Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber," Optik (Stuttgart) 74, 60-64 (1986).
  10. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, "Speckle reduction in laser projection systems by diffractive optical elements," Appl. Opt. 37, 1770-1775 (1998).
    [CrossRef]
  11. J. I. Trisnadi. "Hadamard speckle contrast reduction," Opt. Lett. 29, 11-13 (2004).
    [CrossRef] [PubMed]
  12. L. I. Ardasheva, N. D. Kundikova, M. O. Sadykova, N. R. Sadykov, and V. E. Chernyakov, "Speckle mode rotation in a few mode optical fiber in a longitudinal magnetic field," Opt. Spectrosc. 95, 645-651 (2003).
    [CrossRef]
  13. R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, "Theory of induced spatial incoherence," J. Appl. Phys. 62, 2680-2701 (1987).
    [CrossRef]
  14. D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).
  15. P. F. Michaloski and B. D. Stone, "Laser illumination with speckle reduction," U.S. patent 6,191,887 (20 February 2001).
  16. Y.-H. Chuang and J. J. Armstrong, "Peak power and speckle contrast reduction for a single laser pulse," U.S. patent 6,693,930 (17 February 2004).
  17. W. N. Partlo and W. G. Oldham, "Method and means for reducing speckle in coherent laser pulses," U.S. patent 5,233,460 (3 August 1993).
  18. E. V. Ivakin, A. I. Kitsak, M. U. Karelin, A. M. Lazaruk, and A. S. Rubanov, "Transformation of the spatial coherence of pulsed laser radiation in a delay line," Quantum Electron. 33, 255-258 (2003).
    [CrossRef]
  19. V. M. Kotov, G. N. Shkerdin, D. G. Shkerdin, A. N. Bulyuk, and S. A. Tikhomirov, "Decrease in the contrast of the speckle of the optical field using Bragg diffraction of light by sound," Quantum Electron. 31, 839-842 (2001).
    [CrossRef]
  20. J. W. Goodman, "Some fundamental properties of speckle," J. Opt. Soc. Am. 66, 1145-1150 (1976).
    [CrossRef]
  21. "Jones calculus and its application to propagation in optical systems with birefringent crystals," in Optical Electronics in Modern Communications, 4th ed., A.Yariv, ed., (Oxford U. Press, 1997), pp. 17-30.
  22. T. Mohamed, G. Andler, and R. Schuch, "Development of an electro-optical device for storage of high power laser pulses," Opt. Commun. 214, 291-295 (2002).
    [CrossRef]
  23. D. U. L. Yu and D. L. Bullock, "Device for trapping laser pulses in an optical delay line," U.S. patent 5,701,317 (23 December 1997).
  24. E. Hecht, ed., "Basics of coherence theory: visibility," in Optics, 4th ed. (Addison Wesley Longman, 2002) pp. 562-566.

2005 (1)

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

2004 (1)

2003 (3)

T. J. Stephens, M. J. Haste, D. P. Towers, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, "Fiber-optics delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement," Appl. Opt. 42, 4307-4314 (2003).
[CrossRef] [PubMed]

L. I. Ardasheva, N. D. Kundikova, M. O. Sadykova, N. R. Sadykov, and V. E. Chernyakov, "Speckle mode rotation in a few mode optical fiber in a longitudinal magnetic field," Opt. Spectrosc. 95, 645-651 (2003).
[CrossRef]

E. V. Ivakin, A. I. Kitsak, M. U. Karelin, A. M. Lazaruk, and A. S. Rubanov, "Transformation of the spatial coherence of pulsed laser radiation in a delay line," Quantum Electron. 33, 255-258 (2003).
[CrossRef]

2002 (2)

Y. Matsuura, G. Takada, Y. Yamamoto, Y.-W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).
[CrossRef] [PubMed]

T. Mohamed, G. Andler, and R. Schuch, "Development of an electro-optical device for storage of high power laser pulses," Opt. Commun. 214, 291-295 (2002).
[CrossRef]

2001 (1)

V. M. Kotov, G. N. Shkerdin, D. G. Shkerdin, A. N. Bulyuk, and S. A. Tikhomirov, "Decrease in the contrast of the speckle of the optical field using Bragg diffraction of light by sound," Quantum Electron. 31, 839-842 (2001).
[CrossRef]

1998 (1)

1997 (1)

J. Westerweel, "Fundamentals of digital particle image velocimetry," Meas. Sci. Technol. 8, 179-192 (1997).
[CrossRef]

1995 (1)

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
[CrossRef]

1992 (1)

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, "Mode coupling and phase modulation in vibrating waveguides," J. Lightwave Technol. 10, 1297-1301 (1992).
[CrossRef]

1988 (1)

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

1987 (1)

R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, "Theory of induced spatial incoherence," J. Appl. Phys. 62, 2680-2701 (1987).
[CrossRef]

1986 (1)

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, "Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber," Optik (Stuttgart) 74, 60-64 (1986).

1980 (1)

B. Daino, G. Demarchis, and S. Piazzola, "Speckle and modal noise in optical fibers. Theory and experiment," Opt. Acta 27, 1151-1159 (1980).
[CrossRef]

1976 (1)

Ambar, H.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, "Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber," Optik (Stuttgart) 74, 60-64 (1986).

Anderson, D. J.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
[CrossRef]

Andler, G.

T. Mohamed, G. Andler, and R. Schuch, "Development of an electro-optical device for storage of high power laser pulses," Opt. Commun. 214, 291-295 (2002).
[CrossRef]

Aoki, Y.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, "Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber," Optik (Stuttgart) 74, 60-64 (1986).

Ardasheva, L. I.

L. I. Ardasheva, N. D. Kundikova, M. O. Sadykova, N. R. Sadykov, and V. E. Chernyakov, "Speckle mode rotation in a few mode optical fiber in a longitudinal magnetic field," Opt. Spectrosc. 95, 645-651 (2003).
[CrossRef]

Armstrong, J. J.

Y.-H. Chuang and J. J. Armstrong, "Peak power and speckle contrast reduction for a single laser pulse," U.S. patent 6,693,930 (17 February 2004).

Asakura, T.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, "Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber," Optik (Stuttgart) 74, 60-64 (1986).

Ayral, H.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Bodner, S. E.

R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, "Theory of induced spatial incoherence," J. Appl. Phys. 62, 2680-2701 (1987).
[CrossRef]

Bullock, D. L.

D. U. L. Yu and D. L. Bullock, "Device for trapping laser pulses in an optical delay line," U.S. patent 5,701,317 (23 December 1997).

Bulyuk, A. N.

V. M. Kotov, G. N. Shkerdin, D. G. Shkerdin, A. N. Bulyuk, and S. A. Tikhomirov, "Decrease in the contrast of the speckle of the optical field using Bragg diffraction of light by sound," Quantum Electron. 31, 839-842 (2001).
[CrossRef]

Chernyakov, V. E.

L. I. Ardasheva, N. D. Kundikova, M. O. Sadykova, N. R. Sadykov, and V. E. Chernyakov, "Speckle mode rotation in a few mode optical fiber in a longitudinal magnetic field," Opt. Spectrosc. 95, 645-651 (2003).
[CrossRef]

Chuang, Y.-H.

Y.-H. Chuang and J. J. Armstrong, "Peak power and speckle contrast reduction for a single laser pulse," U.S. patent 6,693,930 (17 February 2004).

Daino, B.

B. Daino, G. Demarchis, and S. Piazzola, "Speckle and modal noise in optical fibers. Theory and experiment," Opt. Acta 27, 1151-1159 (1980).
[CrossRef]

Demarchis, G.

B. Daino, G. Demarchis, and S. Piazzola, "Speckle and modal noise in optical fibers. Theory and experiment," Opt. Acta 27, 1151-1159 (1980).
[CrossRef]

Easson, W. J.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
[CrossRef]

Fuhr, P. L.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, "Mode coupling and phase modulation in vibrating waveguides," J. Lightwave Technol. 10, 1297-1301 (1992).
[CrossRef]

Goodman, J. W.

Gouedard, C.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Greated, C. A.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
[CrossRef]

Halldorsson, T.

Hand, D. P.

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

T. J. Stephens, M. J. Haste, D. P. Towers, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, "Fiber-optics delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement," Appl. Opt. 42, 4307-4314 (2003).
[CrossRef] [PubMed]

Haste, M. J.

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

T. J. Stephens, M. J. Haste, D. P. Towers, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, "Fiber-optics delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement," Appl. Opt. 42, 4307-4314 (2003).
[CrossRef] [PubMed]

Husson, D.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Huston, D. R.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, "Mode coupling and phase modulation in vibrating waveguides," J. Lightwave Technol. 10, 1297-1301 (1992).
[CrossRef]

Ivakin, E. V.

E. V. Ivakin, A. I. Kitsak, M. U. Karelin, A. M. Lazaruk, and A. S. Rubanov, "Transformation of the spatial coherence of pulsed laser radiation in a delay line," Quantum Electron. 33, 255-258 (2003).
[CrossRef]

Jones, J. D. C.

T. J. Stephens, M. J. Haste, D. P. Towers, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, "Fiber-optics delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement," Appl. Opt. 42, 4307-4314 (2003).
[CrossRef] [PubMed]

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
[CrossRef]

Kajenski, P. J.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, "Mode coupling and phase modulation in vibrating waveguides," J. Lightwave Technol. 10, 1297-1301 (1992).
[CrossRef]

Karelin, M. U.

E. V. Ivakin, A. I. Kitsak, M. U. Karelin, A. M. Lazaruk, and A. S. Rubanov, "Transformation of the spatial coherence of pulsed laser radiation in a delay line," Quantum Electron. 33, 255-258 (2003).
[CrossRef]

Kitsak, A. I.

E. V. Ivakin, A. I. Kitsak, M. U. Karelin, A. M. Lazaruk, and A. S. Rubanov, "Transformation of the spatial coherence of pulsed laser radiation in a delay line," Quantum Electron. 33, 255-258 (2003).
[CrossRef]

Kotov, V. M.

V. M. Kotov, G. N. Shkerdin, D. G. Shkerdin, A. N. Bulyuk, and S. A. Tikhomirov, "Decrease in the contrast of the speckle of the optical field using Bragg diffraction of light by sound," Quantum Electron. 31, 839-842 (2001).
[CrossRef]

Kundikova, N. D.

L. I. Ardasheva, N. D. Kundikova, M. O. Sadykova, N. R. Sadykov, and V. E. Chernyakov, "Speckle mode rotation in a few mode optical fiber in a longitudinal magnetic field," Opt. Spectrosc. 95, 645-651 (2003).
[CrossRef]

Lauriou, J.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Lazaruk, A. M.

E. V. Ivakin, A. I. Kitsak, M. U. Karelin, A. M. Lazaruk, and A. S. Rubanov, "Transformation of the spatial coherence of pulsed laser radiation in a delay line," Quantum Electron. 33, 255-258 (2003).
[CrossRef]

Lehmberg, R. H.

R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, "Theory of induced spatial incoherence," J. Appl. Phys. 62, 2680-2701 (1987).
[CrossRef]

Martin, O.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Matsuura, Y.

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

Y. Matsuura, G. Takada, Y. Yamamoto, Y.-W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).
[CrossRef] [PubMed]

McCluskey, D. R.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
[CrossRef]

Meyer, B.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Michaloski, P. F.

P. F. Michaloski and B. D. Stone, "Laser illumination with speckle reduction," U.S. patent 6,191,887 (20 February 2001).

Miyagi, M.

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

Y. Matsuura, G. Takada, Y. Yamamoto, Y.-W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).
[CrossRef] [PubMed]

Mohamed, T.

T. Mohamed, G. Andler, and R. Schuch, "Development of an electro-optical device for storage of high power laser pulses," Opt. Commun. 214, 291-295 (2002).
[CrossRef]

Morgan, R. D.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
[CrossRef]

Oldham, W. G.

W. N. Partlo and W. G. Oldham, "Method and means for reducing speckle in coherent laser pulses," U.S. patent 5,233,460 (3 August 1993).

Parry, J. P.

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

Partlo, W. N.

W. N. Partlo and W. G. Oldham, "Method and means for reducing speckle in coherent laser pulses," U.S. patent 5,233,460 (3 August 1993).

Petursson, P. R.

Piazzola, S.

B. Daino, G. Demarchis, and S. Piazzola, "Speckle and modal noise in optical fibers. Theory and experiment," Opt. Acta 27, 1151-1159 (1980).
[CrossRef]

Rostaing, M.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Rubanov, A. S.

E. V. Ivakin, A. I. Kitsak, M. U. Karelin, A. M. Lazaruk, and A. S. Rubanov, "Transformation of the spatial coherence of pulsed laser radiation in a delay line," Quantum Electron. 33, 255-258 (2003).
[CrossRef]

Sadykov, N. R.

L. I. Ardasheva, N. D. Kundikova, M. O. Sadykova, N. R. Sadykov, and V. E. Chernyakov, "Speckle mode rotation in a few mode optical fiber in a longitudinal magnetic field," Opt. Spectrosc. 95, 645-651 (2003).
[CrossRef]

Sadykova, M. O.

L. I. Ardasheva, N. D. Kundikova, M. O. Sadykova, N. R. Sadykov, and V. E. Chernyakov, "Speckle mode rotation in a few mode optical fiber in a longitudinal magnetic field," Opt. Spectrosc. 95, 645-651 (2003).
[CrossRef]

Sauteret, C.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Schmitt, A. J.

R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, "Theory of induced spatial incoherence," J. Appl. Phys. 62, 2680-2701 (1987).
[CrossRef]

Schuch, R.

T. Mohamed, G. Andler, and R. Schuch, "Development of an electro-optical device for storage of high power laser pulses," Opt. Commun. 214, 291-295 (2002).
[CrossRef]

Shi, Y.-W.

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

Y. Matsuura, G. Takada, Y. Yamamoto, Y.-W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).
[CrossRef] [PubMed]

Shkerdin, D. G.

V. M. Kotov, G. N. Shkerdin, D. G. Shkerdin, A. N. Bulyuk, and S. A. Tikhomirov, "Decrease in the contrast of the speckle of the optical field using Bragg diffraction of light by sound," Quantum Electron. 31, 839-842 (2001).
[CrossRef]

Shkerdin, G. N.

V. M. Kotov, G. N. Shkerdin, D. G. Shkerdin, A. N. Bulyuk, and S. A. Tikhomirov, "Decrease in the contrast of the speckle of the optical field using Bragg diffraction of light by sound," Quantum Electron. 31, 839-842 (2001).
[CrossRef]

Stephens, T. J.

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

T. J. Stephens, M. J. Haste, D. P. Towers, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, "Fiber-optics delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement," Appl. Opt. 42, 4307-4314 (2003).
[CrossRef] [PubMed]

T. J. Stephens, "Fiber-optic Delivery of High Peak Power Laser Pulses for Flow Measurement" Ph.D. dissertation (Heriot-Watt University, 2003).

Stone, B. D.

P. F. Michaloski and B. D. Stone, "Laser illumination with speckle reduction," U.S. patent 6,191,887 (20 February 2001).

Taghizadeh, M. R.

Takada, G.

Takai, N.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, "Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber," Optik (Stuttgart) 74, 60-64 (1986).

Thomson, M. J.

Tikhomirov, S. A.

V. M. Kotov, G. N. Shkerdin, D. G. Shkerdin, A. N. Bulyuk, and S. A. Tikhomirov, "Decrease in the contrast of the speckle of the optical field using Bragg diffraction of light by sound," Quantum Electron. 31, 839-842 (2001).
[CrossRef]

Towers, D. P.

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

T. J. Stephens, M. J. Haste, D. P. Towers, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, "Fiber-optics delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement," Appl. Opt. 42, 4307-4314 (2003).
[CrossRef] [PubMed]

Trisnadi., J. I.

Tschudi, T.

Veron, D.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

Wang, L.

Westerweel, J.

J. Westerweel, "Fundamentals of digital particle image velocimetry," Meas. Sci. Technol. 8, 179-192 (1997).
[CrossRef]

Yamamoto, Y.

Yu, D. U. L.

D. U. L. Yu and D. L. Bullock, "Device for trapping laser pulses in an optical delay line," U.S. patent 5,701,317 (23 December 1997).

Appl. Opt. (3)

J. Appl. Phys. (1)

R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, "Theory of induced spatial incoherence," J. Appl. Phys. 62, 2680-2701 (1987).
[CrossRef]

J. Lightwave Technol. (1)

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, "Mode coupling and phase modulation in vibrating waveguides," J. Lightwave Technol. 10, 1297-1301 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (3)

J. Westerweel, "Fundamentals of digital particle image velocimetry," Meas. Sci. Technol. 8, 179-192 (1997).
[CrossRef]

T. J. Stephens, M. J. Haste, J. P. Parry, D. P. Towers, Y. Matsuura, Y.-W. Shi, M. Miyagi, and D. P. Hand, "Hollow core waveguides for particle image velocimetry," Meas. Sci. Technol. 16, 1119-1125 (2005).
[CrossRef]

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C. Jones, W. J. Easson, and C. A. Greated, "An optical fiber delivery system for pulsed laser particle image velocimetry illumination," Meas. Sci. Technol. 6, 809-814 (1995).
[CrossRef]

Opt. Acta (1)

B. Daino, G. Demarchis, and S. Piazzola, "Speckle and modal noise in optical fibers. Theory and experiment," Opt. Acta 27, 1151-1159 (1980).
[CrossRef]

Opt. Commun. (1)

T. Mohamed, G. Andler, and R. Schuch, "Development of an electro-optical device for storage of high power laser pulses," Opt. Commun. 214, 291-295 (2002).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

L. I. Ardasheva, N. D. Kundikova, M. O. Sadykova, N. R. Sadykov, and V. E. Chernyakov, "Speckle mode rotation in a few mode optical fiber in a longitudinal magnetic field," Opt. Spectrosc. 95, 645-651 (2003).
[CrossRef]

Optik (1)

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, "Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber," Optik (Stuttgart) 74, 60-64 (1986).

Quantum Electron. (2)

E. V. Ivakin, A. I. Kitsak, M. U. Karelin, A. M. Lazaruk, and A. S. Rubanov, "Transformation of the spatial coherence of pulsed laser radiation in a delay line," Quantum Electron. 33, 255-258 (2003).
[CrossRef]

V. M. Kotov, G. N. Shkerdin, D. G. Shkerdin, A. N. Bulyuk, and S. A. Tikhomirov, "Decrease in the contrast of the speckle of the optical field using Bragg diffraction of light by sound," Quantum Electron. 31, 839-842 (2001).
[CrossRef]

Other (8)

"Jones calculus and its application to propagation in optical systems with birefringent crystals," in Optical Electronics in Modern Communications, 4th ed., A.Yariv, ed., (Oxford U. Press, 1997), pp. 17-30.

D. Veron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, "Optical spatial smoothing of Nd-glass laser beam," Opt. Commun. 65, 42-46 (1988).

P. F. Michaloski and B. D. Stone, "Laser illumination with speckle reduction," U.S. patent 6,191,887 (20 February 2001).

Y.-H. Chuang and J. J. Armstrong, "Peak power and speckle contrast reduction for a single laser pulse," U.S. patent 6,693,930 (17 February 2004).

W. N. Partlo and W. G. Oldham, "Method and means for reducing speckle in coherent laser pulses," U.S. patent 5,233,460 (3 August 1993).

T. J. Stephens, "Fiber-optic Delivery of High Peak Power Laser Pulses for Flow Measurement" Ph.D. dissertation (Heriot-Watt University, 2003).

D. U. L. Yu and D. L. Bullock, "Device for trapping laser pulses in an optical delay line," U.S. patent 5,701,317 (23 December 1997).

E. Hecht, ed., "Basics of coherence theory: visibility," in Optics, 4th ed. (Addison Wesley Longman, 2002) pp. 562-566.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sample PIV data showing flow within test combustion engine using fiber delivery (Ref. 2).

Fig. 2
Fig. 2

Series of images of the output from a hollow core fiber taken as the input lens traversed in 10 μm increments. (a) Single image, (b) two images combined, (c) five images combined.

Fig. 3
Fig. 3

Plots showing number of pixels from a sample of ten rows in a normalized speckle pattern having an intensity greater than a particular percentage of the maximum value in that row.

Fig. 4
Fig. 4

Delay loop and launch into fiber.

Fig. 5
Fig. 5

x and y axes fixed in the laboratory frame; light propagates along the z axis. The two principal axes of the waveplate, f (“fast”) and s (“slow”) are rotated by an angle ψ about the x axis.

Fig. 6
Fig. 6

Variation in output intensity from delay loop as a function of the angle of the wave plate within the loop.

Fig. 7
Fig. 7

Delay loop including Pockels cell and launch into fiber.

Fig. 8
Fig. 8

Michelson interferometer setup.

Fig. 9
Fig. 9

Images taken from the output of a hollow core fiber. Image (a) was taken using a single input beam. In (b) the input was split in two and recombined with a path delay between beams. In (c) the input was split multiple times and recombined with a path delay between beams.

Fig. 10
Fig. 10

Plots showing number of pixels from a sample of ten rows in a normalized speckle pattern with an intensity greater than a particular percentage of the maximum value in that row.

Fig. 11
Fig. 11

Temporal profile of the output from a hollow core fiber delivering Q-switched pulses. (a) Output with single pulse launched, (b) output with train of pulses launched. The first three peaks are indicated.

Fig. 12
Fig. 12

Images taken from the output of a hollow core fiber. Image (a) was taken using a single input beam. In (b) the input was split multiple times (with the aid of a Pockels cell) and recombined with a path delay between beams.

Fig. 13
Fig. 13

Plots showing the number of pixels from a sample of ten rows in a normalized speckle pattern with an intensity greater than a particular percentage of the maximum value in that row.

Tables (5)

Tables Icon

Table 1 Speckle Contrast Values a for 1 to 5 Combined Images

Tables Icon

Table 2 Fringe Visibility from a Michelson Interferometer Averaged over 20 Measurements

Tables Icon

Table 3 Speckle Contrast Values a for 1 Beam, 2 Beams, Multiple Beams, and a Single Mode Fiber Output

Tables Icon

Table 4 Fringe Visibility from a Michelson Interferometer Averaged over 20 Measurements

Tables Icon

Table 5 Speckle Contrast Values a for 1 Beam, 2 Beams, and Multiple Beams

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

V ¯ = [ V x V y ] .
| V ¯ | = 1.
R ( ψ ) = [ cos ψ     sin ψ sin ψ     cos ψ ] .
W o = e i ϕ [ e i ( Γ / 2 ) 0 0     e i ( Γ / 2 ) ] .
W ( ψ , Γ ) W = R ( ψ ) W 0 R ( ψ ) .
W = R ( ψ ) [ i     0 0     i ] R ( ψ ) .
T = [ 1     0 0     0 ] .
R = [ 0     0 0     1 ] .
V ¯ i = [ 0 1 ] .
V ¯ l = T W 1 V ¯ i = [ - sin 2 ψ 1 0 ] = [ V l x 0 ] ,
I l = | V l x | 2 + | V l y | 2 = | sin 2 ψ 1 | 2 .
V ¯ o = R W 1 V ¯ i = [ 0 cos 2 ψ 1 ] ,
I o = | V o x | 2 + | V o y | 2 = | cos 2 ψ 1 | 2 .
V o = T W 2 V ¯ l = [ cos ( 2 ψ 2 ) V l x 0 ]
I o = | cos ( 2 ψ 2 ) V l x | 2 .
V ¯ l = R W 2 V ¯ l = [ 0 sin ( 2 ψ 2 ) V l x ] = [ 0 V l y ] .
I l = | sin ( 2 ψ 2 ) V l x | 2 .
V ¯ o = T W 2 V ¯ l = [ sin ( 2 ψ 2 ) V ¯ l y 0 ]
I o = | sin ( 2 ψ 2 ) V l y | 2 .
V ¯ l = R W 2 V ¯ l = [ 0 cos ( 2 ψ 2 ) V l y ] ,
I l = | cos ( 2 ψ 2 ) V l y | 2 .
v I max I min I max + I min .

Metrics