Abstract

Both rod and air-hole types of photonic crystal waveguide gratings are proposed and their coupling coefficients and transmission characteristics are effectively investigated by using a simple coupled-mode theory combined with a finite-element method. The results obtained are compared with the results obtained by using a full numerical simulation method. A new definition for unperturbed waveguides is introduced to obtain accurate coupling coefficients. It is shown that, by using a π-phase-shifted waveguide structure in the case of an air-hole type of photonic crystal waveguide grating, the coupling coefficient is strongly enhanced. The accuracy of the method is discussed through numerical examples of high-index-contrast waveguide gratings.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupled-mode theory for optical waveguides: an overview

Wei-Ping Huang
J. Opt. Soc. Am. A 11(3) 963-983 (1994)

Bandpass filters based on phase-shifted photonic crystal waveguide gratings

Chao Chen, Xuechun Li, Hanhui Li, Kun Xu, Jian Wu, and Jintong Lin
Opt. Express 15(18) 11278-11284 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription