Abstract

We propose a scheme to generate intense, ultrafast mid-infrared pulses with conversion efficiencies exceeding the upper bound for single-stage difference-frequency mixing as predicted by the Manley–Rowe relations. Finite-element fast Fourier transform simulations of the mixing process show that the parametric cascade downconverter generates 1.7 times more photons (at 10  μm) than in the initial pump pulse (center wavelength of 1.48  μm, duration of 130  fs, and pulse energy of 50  μJ), with negligible pulse spatial and temporal distortion.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
    [Crossref] [PubMed]
  2. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
    [Crossref] [PubMed]
  3. F. Rotermund, V. Petrov, and F. Noack, "Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2," Opt. Commun. 185, 177-183 (2000).
    [Crossref]
  4. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Wiener, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
    [Crossref]
  5. V. Petrov, F. Rotermund, and F. Noack "Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals," J. Opt. A Pure Appl. Opt. 3, R1-R19 (2001).
    [Crossref]
  6. C. Ventalon, J. M. Fraser, J. P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, "Generation and complete characterization of intense mid-infrared ulrashort pulses," J. Opt. Soc. Am. B 23, 332-340 (2006).
    [Crossref]
  7. Coherent, Inc. technical information on typical OPerA optical parametric amplifier performance running at 1 kHz and pumped with 1 mJ/pulse at 800 nm.
  8. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  9. Note that we do not include the input or amplified signal photons in this equation.
  10. M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, "Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing," Opt. Lett. 23, 759-761 (1998).
    [Crossref]
  11. K. A. Tillman, D. T. Reid, D. Artigas, and T. Y. Jiang, "Idler-resonant femtosecond tandem optical parametric oscillator tuning from 2.1 μm to 4.2 μm," J. Opt. Soc. Am. B 21, 1551-1558 (2004).
    [Crossref]
  12. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
    [Crossref] [PubMed]
  13. G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
    [Crossref]
  14. E. Takaoka and K. Kato, "Thermo-optic dispersion formula for AgGaS2," Appl. Opt. 38, 4577-4580 (1999).
    [Crossref]
  15. SNLO version 40 nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, N. Mex. 87185-1423.
  16. P. N. Butcher and D. Cotter, Elements of Nonlinear Optics (Cambridge U. Press, 1990).

2006 (1)

2004 (3)

K. A. Tillman, D. T. Reid, D. Artigas, and T. Y. Jiang, "Idler-resonant femtosecond tandem optical parametric oscillator tuning from 2.1 μm to 4.2 μm," J. Opt. Soc. Am. B 21, 1551-1558 (2004).
[Crossref]

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
[Crossref] [PubMed]

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
[Crossref] [PubMed]

2003 (1)

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[Crossref]

2001 (1)

V. Petrov, F. Rotermund, and F. Noack "Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals," J. Opt. A Pure Appl. Opt. 3, R1-R19 (2001).
[Crossref]

2000 (2)

F. Rotermund, V. Petrov, and F. Noack, "Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2," Opt. Commun. 185, 177-183 (2000).
[Crossref]

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Wiener, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
[Crossref]

1999 (1)

1998 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Alexandrou, A.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
[Crossref] [PubMed]

Artigas, D.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Butcher, P. N.

P. N. Butcher and D. Cotter, Elements of Nonlinear Optics (Cambridge U. Press, 1990).

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Cerullo, G.

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Corkum, P. B.

Cotter, D.

P. N. Butcher and D. Cotter, Elements of Nonlinear Optics (Cambridge U. Press, 1990).

De Silvestri, S.

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[Crossref]

Dearborn, M. E.

Diels, J. C.

Elsaesser, T.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
[Crossref] [PubMed]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Fraser, J. M.

C. Ventalon, J. M. Fraser, J. P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, "Generation and complete characterization of intense mid-infrared ulrashort pulses," J. Opt. Soc. Am. B 23, 332-340 (2006).
[Crossref]

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
[Crossref] [PubMed]

Hamm, P.

Hey, R.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
[Crossref] [PubMed]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Jiang, T. Y.

Joffre, M.

C. Ventalon, J. M. Fraser, J. P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, "Generation and complete characterization of intense mid-infrared ulrashort pulses," J. Opt. Soc. Am. B 23, 332-340 (2006).
[Crossref]

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
[Crossref] [PubMed]

Kaindl, R. A.

Kato, K.

Koch, K.

Likforman, J. P.

Luo, C. W.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
[Crossref] [PubMed]

Martin, J. L.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
[Crossref] [PubMed]

Moore, G. T.

Noack, F.

V. Petrov, F. Rotermund, and F. Noack "Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals," J. Opt. A Pure Appl. Opt. 3, R1-R19 (2001).
[Crossref]

F. Rotermund, V. Petrov, and F. Noack, "Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2," Opt. Commun. 185, 177-183 (2000).
[Crossref]

Petrov, V.

V. Petrov, F. Rotermund, and F. Noack "Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals," J. Opt. A Pure Appl. Opt. 3, R1-R19 (2001).
[Crossref]

F. Rotermund, V. Petrov, and F. Noack, "Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2," Opt. Commun. 185, 177-183 (2000).
[Crossref]

Ploog, K. H.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
[Crossref] [PubMed]

Reid, D. T.

Reimann, K.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
[Crossref] [PubMed]

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Wiener, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
[Crossref]

Rotermund, F.

V. Petrov, F. Rotermund, and F. Noack "Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals," J. Opt. A Pure Appl. Opt. 3, R1-R19 (2001).
[Crossref]

F. Rotermund, V. Petrov, and F. Noack, "Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2," Opt. Commun. 185, 177-183 (2000).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Takaoka, E.

Tillman, K. A.

Ventalon, C.

C. Ventalon, J. M. Fraser, J. P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, "Generation and complete characterization of intense mid-infrared ulrashort pulses," J. Opt. Soc. Am. B 23, 332-340 (2006).
[Crossref]

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
[Crossref] [PubMed]

Villeneuve, D. M.

Vos, M. H.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
[Crossref] [PubMed]

Wiener, A. M.

Woerner, M.

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
[Crossref] [PubMed]

R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Wiener, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
[Crossref]

Wurm, M.

Appl. Opt. (1)

J. Opt. A Pure Appl. Opt. (1)

V. Petrov, F. Rotermund, and F. Noack "Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals," J. Opt. A Pure Appl. Opt. 3, R1-R19 (2001).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

F. Rotermund, V. Petrov, and F. Noack, "Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2," Opt. Commun. 185, 177-183 (2000).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation," Phys. Rev. Lett. 92, 047402 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216-13220 (2004).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Other (5)

Coherent, Inc. technical information on typical OPerA optical parametric amplifier performance running at 1 kHz and pumped with 1 mJ/pulse at 800 nm.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Note that we do not include the input or amplified signal photons in this equation.

SNLO version 40 nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, N. Mex. 87185-1423.

P. N. Butcher and D. Cotter, Elements of Nonlinear Optics (Cambridge U. Press, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Signal beam amplification: signal spectrum with (squares) and without (dots) pump present in 1.0 mm GaSe, measured after the DFM crystal. Data recorded by use of the source described in Ref. 6.

Fig. 2
Fig. 2

General parametric cascade downconverter. S1, S2, . . . are DFM crystals. Beams are referenced on the right-hand side and are offset vertically in the figure for purposes of clarity. The frequencies of original pump (ν P ), generated MIR (νMIR), and intermediate beams are indicated.

Fig. 3
Fig. 3

Ratio of PCD to single-stage (SS) DFM power efficiency as a function of quantum efficiency for three different MIR wavelengths: 5 μm (dotted curve), 10 μm (solid curve), and 15 μm (dashed curve).

Fig. 4
Fig. 4

PCD implementation by use of two nonlinear crystals. F, filter.

Fig. 5
Fig. 5

Numerical simulation results of the PCD 10 μm output pulse energy as a function of input 1.48 μm pulse energy (dots), compared with the Manley–Rowe upper limit for single-stage DFM (solid line). Simulation parameters are explained in the text.

Tables (1)

Tables Icon

Table 1 Wavelengths and Phase Matching for PCD Implementation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PE = QE   λ PU λ MIR ,
PE PCD = λ P λ M I R [ f + ( 1 + f ) f + ( 1 + f ) f 2 + ( 1 + f ) f 3 + ( 1 + f ) f 4 + ( 1 + f ) f 5 ] .
PE PCD PE SS = 2 f 5 ( 1 + f ) 1 f .

Metrics