Abstract

Absolute distance measurement based on optical feedback using a single-frequency Yb:Er glass laser is demonstrated via the combination of heterodyne detection and frequency sweep. The technique allows for the enhancement of the sensitivity of the laser response to self-mixing thanks to resonant excitation close to the relaxation-oscillation frequency peak. The experimental results on noncooperative targets are in good agreement with the theory, and the shape of the resulting signal is analyzed in both the temporal and the frequency domains considering the specific dynamic of the class B solid-state laser. Suggestions are provided for further improvements on the signal processing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
    [CrossRef]
  2. K. Otsuka, K. Abe, and J.-Y. Ko, "Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser," Opt. Lett. 27, 1339-1340 (2002).
    [CrossRef]
  3. A. Bearden, M. P. O'Neill, L. C. Osborne, and T. L. Wong, "Imaging and vibration analysis with laser-feedback interferometry," Opt. Lett. 18, 238-240 (1993).
    [CrossRef] [PubMed]
  4. E. Lacot, R. Day, and F. Stoeckel, "Laser optical feedback tomography," Opt. Lett. 24, 744-746 (1999).
    [CrossRef]
  5. K. Otsuka, "Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser," Appl. Opt. 33, 1111-1114 (1994).
    [PubMed]
  6. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
    [CrossRef] [PubMed]
  7. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. 4, S283-S294 (2002).
    [CrossRef]
  8. T. Bosch and N. Servagent, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
    [CrossRef]
  9. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt 25, 1417-1419 (1986).
    [CrossRef] [PubMed]
  10. G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2002).
    [CrossRef]
  11. P. A. Roos, M. Stephens, and C. E. Wieman, "Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode," Appl. Opt. 35, 6754-6761 (1996).
    [CrossRef] [PubMed]
  12. P. J. de Groot, G. M. Gallatin, and S. H. Macomber, "Ranging and velocimetry signal generation in a backscatter-modulated laser diode," Appl. Opt. 27, 4475-4480 (1988).
    [CrossRef] [PubMed]
  13. R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
    [CrossRef]
  14. S. Okamoto, H. Takeda, and F. Kannari, "Ultrahigh sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser," Rev. Sci. Instrum. 66, 3116-3120 (1995).
    [CrossRef]
  15. R. Day, "Une nouvelle technique d'imagerie laser basée sur la réinjection décalée en fréquence. Laser optical feedback imaging (LOFI)," Ph.D. dissertation (University Joseph Fourier, Grenoble I, 2000).
  16. E. Lacot, R. Day, J. Pinel, and F. Stoeckel, "Laser relaxation-oscillation frequency imaging," Opt. Lett. 26, 1483-1485 (2001).
    [CrossRef]
  17. E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys. Rev. A 64, 043815-1-11 (2001).
    [CrossRef]
  18. P. Nerin, P. Besety, P. Labeye, P. Puget, and G. Chartier, "Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:Yag-LiTaO3 microchip laser," J. Opt. 29, 162-167 (1998).
    [CrossRef]
  19. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and G. Sacchi, "Diode-pumped microchip Er-Yb:glass laser," Opt. Lett. 18, 1232-1234 (1993).
    [CrossRef] [PubMed]
  20. "QX laser glasses," http://www.kigre.com.
  21. L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode pumped Yb:Er glass laser," IEEE Photon. Technol. Lett. 16, 1709-1711 (2004).
    [CrossRef]
  22. E. Molva, "Microchip lasers and their applications in optical microsystems," Opt. Mater. 11, 289-299 (1999).
    [CrossRef]
  23. S. Taccheo, P. Laporta, and O. Svelto, "Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser," Opt. Lett. 21, 1747-1749 (1996).
    [CrossRef] [PubMed]

2004 (1)

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode pumped Yb:Er glass laser," IEEE Photon. Technol. Lett. 16, 1709-1711 (2004).
[CrossRef]

2002 (3)

K. Otsuka, K. Abe, and J.-Y. Ko, "Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser," Opt. Lett. 27, 1339-1340 (2002).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. 4, S283-S294 (2002).
[CrossRef]

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2002).
[CrossRef]

2001 (3)

T. Bosch and N. Servagent, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

E. Lacot, R. Day, J. Pinel, and F. Stoeckel, "Laser relaxation-oscillation frequency imaging," Opt. Lett. 26, 1483-1485 (2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys. Rev. A 64, 043815-1-11 (2001).
[CrossRef]

1999 (3)

E. Molva, "Microchip lasers and their applications in optical microsystems," Opt. Mater. 11, 289-299 (1999).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, "Laser optical feedback tomography," Opt. Lett. 24, 744-746 (1999).
[CrossRef]

1998 (1)

P. Nerin, P. Besety, P. Labeye, P. Puget, and G. Chartier, "Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:Yag-LiTaO3 microchip laser," J. Opt. 29, 162-167 (1998).
[CrossRef]

1996 (2)

1995 (1)

S. Okamoto, H. Takeda, and F. Kannari, "Ultrahigh sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser," Rev. Sci. Instrum. 66, 3116-3120 (1995).
[CrossRef]

1994 (1)

1993 (3)

1988 (1)

1986 (1)

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt 25, 1417-1419 (1986).
[CrossRef] [PubMed]

1980 (1)

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
[CrossRef]

Abe, K.

Asakawa, Y.

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

Bearden, A.

Besety, P.

P. Nerin, P. Besety, P. Labeye, P. Puget, and G. Chartier, "Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:Yag-LiTaO3 microchip laser," J. Opt. 29, 162-167 (1998).
[CrossRef]

Bosch, T.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. 4, S283-S294 (2002).
[CrossRef]

T. Bosch and N. Servagent, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

Boyle, W. J. O.

Bozzi-Pietra, S.

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2002).
[CrossRef]

Chartier, G.

P. Nerin, P. Besety, P. Labeye, P. Puget, and G. Chartier, "Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:Yag-LiTaO3 microchip laser," J. Opt. 29, 162-167 (1998).
[CrossRef]

Day, R.

E. Lacot, R. Day, J. Pinel, and F. Stoeckel, "Laser relaxation-oscillation frequency imaging," Opt. Lett. 26, 1483-1485 (2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys. Rev. A 64, 043815-1-11 (2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, "Laser optical feedback tomography," Opt. Lett. 24, 744-746 (1999).
[CrossRef]

R. Day, "Une nouvelle technique d'imagerie laser basée sur la réinjection décalée en fréquence. Laser optical feedback imaging (LOFI)," Ph.D. dissertation (University Joseph Fourier, Grenoble I, 2000).

de Groot, P. J.

Donati, S.

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2002).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. 4, S283-S294 (2002).
[CrossRef]

Gallatin, G. M.

Gilles, H.

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode pumped Yb:Er glass laser," IEEE Photon. Technol. Lett. 16, 1709-1711 (2004).
[CrossRef]

Girard, S.

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode pumped Yb:Er glass laser," IEEE Photon. Technol. Lett. 16, 1709-1711 (2004).
[CrossRef]

Giuliani, G.

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2002).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. 4, S283-S294 (2002).
[CrossRef]

Grattan, K. T. V.

Kannari, F.

S. Okamoto, H. Takeda, and F. Kannari, "Ultrahigh sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser," Rev. Sci. Instrum. 66, 3116-3120 (1995).
[CrossRef]

Kawai, R.

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

Kervevan, L.

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode pumped Yb:Er glass laser," IEEE Photon. Technol. Lett. 16, 1709-1711 (2004).
[CrossRef]

Ko, J.-Y.

Kobayashi, K.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
[CrossRef]

Labeye, P.

P. Nerin, P. Besety, P. Labeye, P. Puget, and G. Chartier, "Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:Yag-LiTaO3 microchip laser," J. Opt. 29, 162-167 (1998).
[CrossRef]

Lacot, E.

Lang, R.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
[CrossRef]

Laporta, P.

Laroche, M.

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode pumped Yb:Er glass laser," IEEE Photon. Technol. Lett. 16, 1709-1711 (2004).
[CrossRef]

Longhi, S.

Macomber, S. H.

Mochizuki, A.

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt 25, 1417-1419 (1986).
[CrossRef] [PubMed]

Molva, E.

E. Molva, "Microchip lasers and their applications in optical microsystems," Opt. Mater. 11, 289-299 (1999).
[CrossRef]

Nerin, P.

P. Nerin, P. Besety, P. Labeye, P. Puget, and G. Chartier, "Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:Yag-LiTaO3 microchip laser," J. Opt. 29, 162-167 (1998).
[CrossRef]

Norgia, M.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. 4, S283-S294 (2002).
[CrossRef]

Okamoto, S.

S. Okamoto, H. Takeda, and F. Kannari, "Ultrahigh sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser," Rev. Sci. Instrum. 66, 3116-3120 (1995).
[CrossRef]

O'Neill, M. P.

Osborne, L. C.

Otsuka, K.

Palmer, A. W.

Pinel, J.

Puget, P.

P. Nerin, P. Besety, P. Labeye, P. Puget, and G. Chartier, "Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:Yag-LiTaO3 microchip laser," J. Opt. 29, 162-167 (1998).
[CrossRef]

Roos, P. A.

Sacchi, G.

Servagent, N.

T. Bosch and N. Servagent, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

Shinohara, S.

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt 25, 1417-1419 (1986).
[CrossRef] [PubMed]

Stephens, M.

Stoeckel, F.

Sumi, M.

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt 25, 1417-1419 (1986).
[CrossRef] [PubMed]

Svelto, O.

Taccheo, S.

Takeda, H.

S. Okamoto, H. Takeda, and F. Kannari, "Ultrahigh sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser," Rev. Sci. Instrum. 66, 3116-3120 (1995).
[CrossRef]

Wang, W. M.

Wieman, C. E.

Wong, T. L.

Yoshida, H.

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt 25, 1417-1419 (1986).
[CrossRef] [PubMed]

Appl. Opt (1)

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt 25, 1417-1419 (1986).
[CrossRef] [PubMed]

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode pumped Yb:Er glass laser," IEEE Photon. Technol. Lett. 16, 1709-1711 (2004).
[CrossRef]

J. Opt. (2)

P. Nerin, P. Besety, P. Labeye, P. Puget, and G. Chartier, "Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:Yag-LiTaO3 microchip laser," J. Opt. 29, 162-167 (1998).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. 4, S283-S294 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2002).
[CrossRef]

Opt. Eng. (1)

T. Bosch and N. Servagent, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

Opt. Lett. (6)

Opt. Mater. (1)

E. Molva, "Microchip lasers and their applications in optical microsystems," Opt. Mater. 11, 289-299 (1999).
[CrossRef]

Phys. Rev. A (1)

E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys. Rev. A 64, 043815-1-11 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Okamoto, H. Takeda, and F. Kannari, "Ultrahigh sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser," Rev. Sci. Instrum. 66, 3116-3120 (1995).
[CrossRef]

Other (2)

R. Day, "Une nouvelle technique d'imagerie laser basée sur la réinjection décalée en fréquence. Laser optical feedback imaging (LOFI)," Ph.D. dissertation (University Joseph Fourier, Grenoble I, 2000).

"QX laser glasses," http://www.kigre.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: DO, digital oscilloscope; SA, RF spectrum analyzer; LA, lock-in amplifier; AOM, acousto-optic modulator; FLD, fiber laser diode; G, Yb:Er glass; E, etalon; OC, output coupler; L, L1, L2, lenses; BS, beam splitter; PZT, piezoelectric transducer; PD, InGaAs photodiode; T, target.

Fig. 2
Fig. 2

Theoretical evolution of the optical frequency versus time. (a) Homodyne detection, (b) heterodyne detection: solid lines, laser frequency before the AOM; dashed–dotted lines, frequency after the AOM; dashed lines, reinjected into the laser by target.

Fig. 3
Fig. 3

RF spectrum of the detected signal in heterodyne detection without frequency sweep, νAOM = 240 kHz.

Fig. 4
Fig. 4

RF spectrum of the detected signal in heterodyne detection: dashed curve, without frequency sweep; solid curve, with frequency sweep for D = 35 cm, Δνopt = 1.79 GHz, and fm = 100 Hz. The bandwidth and the sweep time of the spectrum analyzer are, respectively, 3 kHz and 1 s.

Fig. 5
Fig. 5

(a) Evolution of the RF spectrum versus the distance D. (b) Temporal signal for a target located at D = 38.5 cm.

Fig. 6
Fig. 6

Evolution of the signal amplitude versus the modulation frequency applied to the AOM.

Fig. 7
Fig. 7

Comparison between the distance D deduced from the optical feedback measurement and a reference provided by an industrial telemeter.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

K = γ c γ 1 = τ 1 τ c ,
τ = 2 D c ,
ν r e i n j e c t e d ( t ) = ν A O M + ν l a s e r ( t τ ) ,
ν b e a t = | ν l a s e r ( t ) ν r e i n j e c t e d ( t ) | .
                ν l a s e r ( t ) = ν 0 ± 2 f m Δ ν o p t t ,
ν r e i n j e c t e d ( t ) = ν 0 ± 2 f m Δ ν o p t ( t τ ) + ν A O M ,
ν b e a t = ν A O M ± 2 f m Δ ν o p t τ .
ν b e a t = ν A O M ± Δ ν b e a t .
Δ ν b e a t = 4 f m Δ ν o p t c D .
ν b e a t = ν A O M ± Δ ν b e a t .

Metrics