Abstract

Based on experiments, the dependence of material removal and surface roughness on the characteristics of abrasive particles, on the workpiece, and on other process parameters such as working pressure and incidence angle in fluid jet polishing (FJP) technology were investigated. Experimental results show a volume removal rate that is approximately proportional to the square root of the Young's modulus (E) and inversely proportional to the square of the Knoop hardness (Hk) of glass. Similarly, surface roughness is also determined in FJP by elastic stiffness E and plastic parameter Hk. The influence of the incidence angle on surface roughness and material removal were studied, and a linear dependence of material removal on the working pressure was obtained. Further, it was found that an optical-quality surface can be achieved by use of Cerox 1650 abrasive particles in FJP and can satisfy the requirements of modern optical manufacturing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. W. Fähnle, H. van Brug, and H. J. Frankena, "Fluid jet polishing of optical surfaces," Appl. Opt. 37, 6671-6673 (1998).
    [CrossRef]
  2. S. Li and L. Zhen, Handbook of Optical Design (Beijing Institute of Technology Press, 1990), pp. 26-37.
  3. J. C. Lambropoulos, S. Xu, and T. Fang, "Loose abrasive lapping hardness of optical glasses and its interpretation," Appl. Opt. 36, 1501-1516 (1997).
    [CrossRef] [PubMed]
  4. J. C. Lambropoulos, "Using the grinding merit function (GMF): what quality of grind can you expect in the shop?" Convergence 6(5), 1-7 (1998).
  5. T. Fang and J. C. Lambropoulos, "Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP)," LLE Rev. 86, 101-107 (2001).
  6. S. M. Booij, "Fluid jet polishing--possibilities and limitations of a new fabrication technique," Ph.D. dissertation (Delft U. Technol. Press, 22 September 2003).
  7. J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, and D. Golini, "Surface microroughness of optical glasses under deterministic microgrinding," Appl. Opt. 35, 4448-4462 (1996).
    [CrossRef] [PubMed]
  8. G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, "Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture," J. Biomed. Mater. Res. 54, 87-95 (2001).
    [CrossRef]
  9. K. S. Tan, R. J. K. Wood, and K. R. Stokes, "The slurry erosion behaviour of high velocity oxy-fuel (HVOF) sprayed aluminium bronze coatings," Wear 255, 195-205 (2003).
  10. O. W. Fähnle, "Fluid jet polishing: removal process analysis," in Optical Fabrication and Testing, R.Geyl and J.Maxwell, eds., Proc. SPIE 3739,68-77 (1999).
  11. S. M. Booij, H. van Brug, J. J. M. Braat, and O. W. Fähnle, "Nanometer deep shaping with fluid jet polishing," Opt. Eng. 41, 1926-1931 (2002).
    [CrossRef]
  12. S. M. Booij, O. W. Fähnle, and J. J. M. Braat, "Shaping with fluid jet polishing by footprint optimization," Appl. Opt. 43, 67-69 (2004).
    [CrossRef] [PubMed]

2004 (1)

2002 (1)

S. M. Booij, H. van Brug, J. J. M. Braat, and O. W. Fähnle, "Nanometer deep shaping with fluid jet polishing," Opt. Eng. 41, 1926-1931 (2002).
[CrossRef]

2001 (1)

G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, "Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture," J. Biomed. Mater. Res. 54, 87-95 (2001).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

Balooch, M.

G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, "Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture," J. Biomed. Mater. Res. 54, 87-95 (2001).
[CrossRef]

Booij, S. M.

S. M. Booij, O. W. Fähnle, and J. J. M. Braat, "Shaping with fluid jet polishing by footprint optimization," Appl. Opt. 43, 67-69 (2004).
[CrossRef] [PubMed]

S. M. Booij, H. van Brug, J. J. M. Braat, and O. W. Fähnle, "Nanometer deep shaping with fluid jet polishing," Opt. Eng. 41, 1926-1931 (2002).
[CrossRef]

S. M. Booij, "Fluid jet polishing--possibilities and limitations of a new fabrication technique," Ph.D. dissertation (Delft U. Technol. Press, 22 September 2003).

Braat, J. J. M.

S. M. Booij, O. W. Fähnle, and J. J. M. Braat, "Shaping with fluid jet polishing by footprint optimization," Appl. Opt. 43, 67-69 (2004).
[CrossRef] [PubMed]

S. M. Booij, H. van Brug, J. J. M. Braat, and O. W. Fähnle, "Nanometer deep shaping with fluid jet polishing," Opt. Eng. 41, 1926-1931 (2002).
[CrossRef]

Cumbo, M. J.

Fähnle, O. W.

S. M. Booij, O. W. Fähnle, and J. J. M. Braat, "Shaping with fluid jet polishing by footprint optimization," Appl. Opt. 43, 67-69 (2004).
[CrossRef] [PubMed]

S. M. Booij, H. van Brug, J. J. M. Braat, and O. W. Fähnle, "Nanometer deep shaping with fluid jet polishing," Opt. Eng. 41, 1926-1931 (2002).
[CrossRef]

O. W. Fähnle, H. van Brug, and H. J. Frankena, "Fluid jet polishing of optical surfaces," Appl. Opt. 37, 6671-6673 (1998).
[CrossRef]

O. W. Fähnle, "Fluid jet polishing: removal process analysis," in Optical Fabrication and Testing, R.Geyl and J.Maxwell, eds., Proc. SPIE 3739,68-77 (1999).

Fang, T.

Frankena, H. J.

Funkenbusch, P. D.

Gallagher, R. R.

G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, "Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture," J. Biomed. Mater. Res. 54, 87-95 (2001).
[CrossRef]

Gansky, S. A.

G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, "Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture," J. Biomed. Mater. Res. 54, 87-95 (2001).
[CrossRef]

Golini, D.

Jacobs, S. D.

Lambropoulos, J. C.

J. C. Lambropoulos, S. Xu, and T. Fang, "Loose abrasive lapping hardness of optical glasses and its interpretation," Appl. Opt. 36, 1501-1516 (1997).
[CrossRef] [PubMed]

J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, and D. Golini, "Surface microroughness of optical glasses under deterministic microgrinding," Appl. Opt. 35, 4448-4462 (1996).
[CrossRef] [PubMed]

T. Fang and J. C. Lambropoulos, "Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP)," LLE Rev. 86, 101-107 (2001).

J. C. Lambropoulos, "Using the grinding merit function (GMF): what quality of grind can you expect in the shop?" Convergence 6(5), 1-7 (1998).

Li, S.

S. Li and L. Zhen, Handbook of Optical Design (Beijing Institute of Technology Press, 1990), pp. 26-37.

Marshall, G. W.

G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, "Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture," J. Biomed. Mater. Res. 54, 87-95 (2001).
[CrossRef]

Marshall, S. J.

G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, "Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture," J. Biomed. Mater. Res. 54, 87-95 (2001).
[CrossRef]

Stokes, K. R.

K. S. Tan, R. J. K. Wood, and K. R. Stokes, "The slurry erosion behaviour of high velocity oxy-fuel (HVOF) sprayed aluminium bronze coatings," Wear 255, 195-205 (2003).

Tan, K. S.

K. S. Tan, R. J. K. Wood, and K. R. Stokes, "The slurry erosion behaviour of high velocity oxy-fuel (HVOF) sprayed aluminium bronze coatings," Wear 255, 195-205 (2003).

van Brug, H.

S. M. Booij, H. van Brug, J. J. M. Braat, and O. W. Fähnle, "Nanometer deep shaping with fluid jet polishing," Opt. Eng. 41, 1926-1931 (2002).
[CrossRef]

O. W. Fähnle, H. van Brug, and H. J. Frankena, "Fluid jet polishing of optical surfaces," Appl. Opt. 37, 6671-6673 (1998).
[CrossRef]

Wood, R. J. K.

K. S. Tan, R. J. K. Wood, and K. R. Stokes, "The slurry erosion behaviour of high velocity oxy-fuel (HVOF) sprayed aluminium bronze coatings," Wear 255, 195-205 (2003).

Xu, S.

Zhen, L.

S. Li and L. Zhen, Handbook of Optical Design (Beijing Institute of Technology Press, 1990), pp. 26-37.

Appl. Opt. (4)

J. Biomed. Mater. Res. (1)

G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, "Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture," J. Biomed. Mater. Res. 54, 87-95 (2001).
[CrossRef]

LLE Rev. (1)

T. Fang and J. C. Lambropoulos, "Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP)," LLE Rev. 86, 101-107 (2001).

Opt. Eng. (1)

S. M. Booij, H. van Brug, J. J. M. Braat, and O. W. Fähnle, "Nanometer deep shaping with fluid jet polishing," Opt. Eng. 41, 1926-1931 (2002).
[CrossRef]

Other (5)

S. M. Booij, "Fluid jet polishing--possibilities and limitations of a new fabrication technique," Ph.D. dissertation (Delft U. Technol. Press, 22 September 2003).

K. S. Tan, R. J. K. Wood, and K. R. Stokes, "The slurry erosion behaviour of high velocity oxy-fuel (HVOF) sprayed aluminium bronze coatings," Wear 255, 195-205 (2003).

O. W. Fähnle, "Fluid jet polishing: removal process analysis," in Optical Fabrication and Testing, R.Geyl and J.Maxwell, eds., Proc. SPIE 3739,68-77 (1999).

J. C. Lambropoulos, "Using the grinding merit function (GMF): what quality of grind can you expect in the shop?" Convergence 6(5), 1-7 (1998).

S. Li and L. Zhen, Handbook of Optical Design (Beijing Institute of Technology Press, 1990), pp. 26-37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic setup of FJP.

Fig. 2
Fig. 2

(Color online) Surface during polishing.

Fig. 3
Fig. 3

(Color online) Surface roughness: (a) initial surface structure before polishing, (b) structure after polishing.

Fig. 4
Fig. 4

(Color online) Pits appear on the surface when the SiC abrasive particles are used.

Fig. 5
Fig. 5

(Color online) No pits were observed.

Fig. 6
Fig. 6

(Color online) Correlation of the material removal with glass abrasion hardness.

Fig. 7
Fig. 7

(Color online) Relative material removal versus Knoop hardness (Hk ) and Young's modulus (E) of glasses.

Fig. 8
Fig. 8

(Color online) Correlation of surface roughness with glass Knoop hardness.

Fig. 9
Fig. 9

(Color online) Relative surface roughness versus Knoop hardness (Hk ) and Young's modulus (E) of glasses.

Fig. 10
Fig. 10

(Color online) Surface structure of ZF6: (a) for classic polishing technology, (b) for FJP.

Fig. 11
Fig. 11

(Color online) Material removal footprint for several incidence angles with a cylindrical nozzle. (a), (b), (c), (d) Incidence angles of 0°, 30°, 45°, and 60°, respectively.

Fig. 12
Fig. 12

(Color online) Dependence of material removal on working pressure.

Fig. 13
Fig. 13

(Color online) Dependence of surface roughness on working pressure.

Tables (2)

Tables Icon

Table 1 Material Removal and Surface Roughness of Several Materials

Tables Icon

Table 2 Influence of Incidence Angle on Surface Roughness and Material Removal

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F A = Δ V ( g l a s s ) Δ V ( K 9 ) .
K c = 0.016 ( E H ) 1 / 2 ( P c 1 / 2 ) ,
Δ h E 0.5 H k     1.8 ,
S R E 0.5 H k     1.4 .
h = 0.103 p 0.146.

Metrics