Abstract

The heating of laser-irradiated two-layer spherical particles is analyzed theoretically and numerically by solution of the heat conduction equation. The internal heat source function and temperature distributions are presented for particles composed of a dye-doped polystyrene core and a deposited silver shell. It is shown that the internal heat source function distributions inside such particles substantially depend on core radii and shell thicknesses. Therefore the same parameters also strongly influence the heating times of such particles. In particular, the increase in thickness of the surface silver layer can result both in reduction of the heating time of two-layer particles and in strong growth of the heating time.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Moskovits, "Surface enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
    [CrossRef]
  2. V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 287-294 (1987).
  3. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites," Phys. Rev. B 53, 2425-2436 (1996).
    [CrossRef]
  4. V. A. Markel, L. A. Muratov, M. A. Stockman, and T. F. George, "Theory and numeric simulation of optical properties of fractal clusters," Phys. Rev. B 43, 8183-8195 (1991).
    [CrossRef]
  5. A. Ryasnyansky, B. Palpant, S. Debrus, R. Ganeev, A. Stepanov, N. Can, C. Bushal, and S. Uysal, "Nonlinear optical absorption of ZnO doped with copper nanoparticles in picosecond and nanosecond pulse laser field," Appl. Opt. 44, 2839-2845 (2005).
    [CrossRef] [PubMed]
  6. S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, "Surface-enhanced parametric scattering of light by silver clusters," Sov. Phys. JETP Lett. 47, 243-246 (1988).
  7. A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275-373 (2000).
    [CrossRef]
  8. V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, W. Kim, Z. C. Ying, R. L. Armstrong and V. M. Shalaev, "Large local optical activity in fractal aggregates of nanoparticles," J. Opt. Soc. Am. B 18, 1896-1903 (2001).
    [CrossRef]
  9. R. K. Chang and T. E. Furtak, eds., Surface - Enhanced Raman Scattering (Plenum, 1982).
  10. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-enhanced second-harmonic generation," Phys. Rev. Lett. 46, 145-148 (1981).
    [CrossRef]
  11. V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
    [CrossRef]
  12. W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses," Phys. Rev. Lett. 82, 4811-4814 (1999).
    [CrossRef]
  13. A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1896 (2004).
    [CrossRef]
  14. A. P. Prishivalko, L. G. Astafyeva, and S. T. Leiko, "Heating and destruction of metallic particles exposed to intense laser radiation," Appl. Opt. 35, 965-972 (1996).
    [CrossRef] [PubMed]
  15. L. G. Astafyeva and A. P. Prishivalko, "Heating of solid aerosol particles to intense optical radiation," Int. J. Heat Mass Transfer 41, 489-499 (1998).
    [CrossRef]
  16. L. G. Astafyeva and A. P. Prishivalko, "Heating of aluminum particles with oxide covers by intense laser radiation," Fiz. Khim. Obrab. Mater. N 4, 18-27 (1993).
  17. L. G. Astafyeva and A. P. Prishivalko, "Heating of metallized particles by high-intensity laser radiation," Inzh.-Fiz. Zh. 66, 340-344 (1994).
  18. L. G. Astafyeva and A. P. Prishivalko, "Heating of homogeneous and hollow particles of aluminum oxide by intense laser radiation," Teplofiz. Vys. Temp. 32, 230-235 (1994).
  19. L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Disruption of hollow aluminum particles by intense laser radiation," J. Opt. Soc. Am. B 14, 432-436 (1997).
    [CrossRef]
  20. L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Heating and destruction of hollow aluminum oxide particles by laser radiation," Fiz. Khim. Obrab. Mater. N 5, 27-32 (1997).
  21. L. G. Astafyeva, N. V. Voshchinnikov, and L. B. F. M. Waters, "Heating of three-layer solid particles by laser radiation," Appl. Opt. 41, 3700-3705 (2002).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1896 (2004).
[CrossRef]

2002 (2)

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

L. G. Astafyeva, N. V. Voshchinnikov, and L. B. F. M. Waters, "Heating of three-layer solid particles by laser radiation," Appl. Opt. 41, 3700-3705 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275-373 (2000).
[CrossRef]

1999 (1)

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses," Phys. Rev. Lett. 82, 4811-4814 (1999).
[CrossRef]

1998 (1)

L. G. Astafyeva and A. P. Prishivalko, "Heating of solid aerosol particles to intense optical radiation," Int. J. Heat Mass Transfer 41, 489-499 (1998).
[CrossRef]

1997 (2)

L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Heating and destruction of hollow aluminum oxide particles by laser radiation," Fiz. Khim. Obrab. Mater. N 5, 27-32 (1997).

L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Disruption of hollow aluminum particles by intense laser radiation," J. Opt. Soc. Am. B 14, 432-436 (1997).
[CrossRef]

1996 (2)

A. P. Prishivalko, L. G. Astafyeva, and S. T. Leiko, "Heating and destruction of metallic particles exposed to intense laser radiation," Appl. Opt. 35, 965-972 (1996).
[CrossRef] [PubMed]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites," Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

1994 (2)

L. G. Astafyeva and A. P. Prishivalko, "Heating of metallized particles by high-intensity laser radiation," Inzh.-Fiz. Zh. 66, 340-344 (1994).

L. G. Astafyeva and A. P. Prishivalko, "Heating of homogeneous and hollow particles of aluminum oxide by intense laser radiation," Teplofiz. Vys. Temp. 32, 230-235 (1994).

1993 (1)

L. G. Astafyeva and A. P. Prishivalko, "Heating of aluminum particles with oxide covers by intense laser radiation," Fiz. Khim. Obrab. Mater. N 4, 18-27 (1993).

1991 (1)

V. A. Markel, L. A. Muratov, M. A. Stockman, and T. F. George, "Theory and numeric simulation of optical properties of fractal clusters," Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

1988 (1)

S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, "Surface-enhanced parametric scattering of light by silver clusters," Sov. Phys. JETP Lett. 47, 243-246 (1988).

1987 (1)

V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 287-294 (1987).

1985 (1)

M. Moskovits, "Surface enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

1981 (1)

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-enhanced second-harmonic generation," Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

Armstrong, R. L.

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, W. Kim, Z. C. Ying, R. L. Armstrong and V. M. Shalaev, "Large local optical activity in fractal aggregates of nanoparticles," J. Opt. Soc. Am. B 18, 1896-1903 (2001).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses," Phys. Rev. Lett. 82, 4811-4814 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites," Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

Astafyeva, L. G.

L. G. Astafyeva, N. V. Voshchinnikov, and L. B. F. M. Waters, "Heating of three-layer solid particles by laser radiation," Appl. Opt. 41, 3700-3705 (2002).
[CrossRef] [PubMed]

L. G. Astafyeva and A. P. Prishivalko, "Heating of solid aerosol particles to intense optical radiation," Int. J. Heat Mass Transfer 41, 489-499 (1998).
[CrossRef]

L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Heating and destruction of hollow aluminum oxide particles by laser radiation," Fiz. Khim. Obrab. Mater. N 5, 27-32 (1997).

L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Disruption of hollow aluminum particles by intense laser radiation," J. Opt. Soc. Am. B 14, 432-436 (1997).
[CrossRef]

A. P. Prishivalko, L. G. Astafyeva, and S. T. Leiko, "Heating and destruction of metallic particles exposed to intense laser radiation," Appl. Opt. 35, 965-972 (1996).
[CrossRef] [PubMed]

L. G. Astafyeva and A. P. Prishivalko, "Heating of homogeneous and hollow particles of aluminum oxide by intense laser radiation," Teplofiz. Vys. Temp. 32, 230-235 (1994).

L. G. Astafyeva and A. P. Prishivalko, "Heating of metallized particles by high-intensity laser radiation," Inzh.-Fiz. Zh. 66, 340-344 (1994).

L. G. Astafyeva and A. P. Prishivalko, "Heating of aluminum particles with oxide covers by intense laser radiation," Fiz. Khim. Obrab. Mater. N 4, 18-27 (1993).

Bragg, W. D.

Bushal, C.

Can, N.

Chang, R. K.

R. K. Chang and T. E. Furtak, eds., Surface - Enhanced Raman Scattering (Plenum, 1982).

Chen, C. K.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-enhanced second-harmonic generation," Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

Chubakov, P. A.

S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, "Surface-enhanced parametric scattering of light by silver clusters," Sov. Phys. JETP Lett. 47, 243-246 (1988).

de Castro, A. R. B.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-enhanced second-harmonic generation," Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

Debrus, S.

Drachev, V. P.

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, W. Kim, Z. C. Ying, R. L. Armstrong and V. M. Shalaev, "Large local optical activity in fractal aggregates of nanoparticles," J. Opt. Soc. Am. B 18, 1896-1903 (2001).
[CrossRef]

Furtak, T. E.

R. K. Chang and T. E. Furtak, eds., Surface - Enhanced Raman Scattering (Plenum, 1982).

Ganeev, R.

George, T. F.

V. A. Markel, L. A. Muratov, M. A. Stockman, and T. F. George, "Theory and numeric simulation of optical properties of fractal clusters," Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Hilger, A.

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1896 (2004).
[CrossRef]

Khaliullin, E. N.

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Kim, W.

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, W. Kim, Z. C. Ying, R. L. Armstrong and V. M. Shalaev, "Large local optical activity in fractal aggregates of nanoparticles," J. Opt. Soc. Am. B 18, 1896-1903 (2001).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses," Phys. Rev. Lett. 82, 4811-4814 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites," Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

Kreibig, U.

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1896 (2004).
[CrossRef]

Leiko, S. T.

Markel, V. A.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites," Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

V. A. Markel, L. A. Muratov, M. A. Stockman, and T. F. George, "Theory and numeric simulation of optical properties of fractal clusters," Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Moskovits, M.

M. Moskovits, "Surface enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Muratov, L. A.

V. A. Markel, L. A. Muratov, M. A. Stockman, and T. F. George, "Theory and numeric simulation of optical properties of fractal clusters," Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Palpant, B.

Pinchuk, A.

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1896 (2004).
[CrossRef]

Plessen, G.

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1896 (2004).
[CrossRef]

Podolskiy, V. A.

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, W. Kim, Z. C. Ying, R. L. Armstrong and V. M. Shalaev, "Large local optical activity in fractal aggregates of nanoparticles," J. Opt. Soc. Am. B 18, 1896-1903 (2001).
[CrossRef]

Prishivalko, A. P.

L. G. Astafyeva and A. P. Prishivalko, "Heating of solid aerosol particles to intense optical radiation," Int. J. Heat Mass Transfer 41, 489-499 (1998).
[CrossRef]

L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Disruption of hollow aluminum particles by intense laser radiation," J. Opt. Soc. Am. B 14, 432-436 (1997).
[CrossRef]

L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Heating and destruction of hollow aluminum oxide particles by laser radiation," Fiz. Khim. Obrab. Mater. N 5, 27-32 (1997).

A. P. Prishivalko, L. G. Astafyeva, and S. T. Leiko, "Heating and destruction of metallic particles exposed to intense laser radiation," Appl. Opt. 35, 965-972 (1996).
[CrossRef] [PubMed]

L. G. Astafyeva and A. P. Prishivalko, "Heating of homogeneous and hollow particles of aluminum oxide by intense laser radiation," Teplofiz. Vys. Temp. 32, 230-235 (1994).

L. G. Astafyeva and A. P. Prishivalko, "Heating of metallized particles by high-intensity laser radiation," Inzh.-Fiz. Zh. 66, 340-344 (1994).

L. G. Astafyeva and A. P. Prishivalko, "Heating of aluminum particles with oxide covers by intense laser radiation," Fiz. Khim. Obrab. Mater. N 4, 18-27 (1993).

Rautian, S. G.

S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, "Surface-enhanced parametric scattering of light by silver clusters," Sov. Phys. JETP Lett. 47, 243-246 (1988).

Ryasnyansky, A.

Safonov, V. P.

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, W. Kim, Z. C. Ying, R. L. Armstrong and V. M. Shalaev, "Large local optical activity in fractal aggregates of nanoparticles," J. Opt. Soc. Am. B 18, 1896-1903 (2001).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses," Phys. Rev. Lett. 82, 4811-4814 (1999).
[CrossRef]

S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, "Surface-enhanced parametric scattering of light by silver clusters," Sov. Phys. JETP Lett. 47, 243-246 (1988).

Sarychev, A. K.

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275-373 (2000).
[CrossRef]

Shalaev, V. M.

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, W. Kim, Z. C. Ying, R. L. Armstrong and V. M. Shalaev, "Large local optical activity in fractal aggregates of nanoparticles," J. Opt. Soc. Am. B 18, 1896-1903 (2001).
[CrossRef]

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275-373 (2000).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses," Phys. Rev. Lett. 82, 4811-4814 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites," Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, "Surface-enhanced parametric scattering of light by silver clusters," Sov. Phys. JETP Lett. 47, 243-246 (1988).

V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 287-294 (1987).

Shen, Y. R.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-enhanced second-harmonic generation," Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

Stechel, E. B.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites," Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

Stepanov, A.

Stockman, M. A.

V. A. Markel, L. A. Muratov, M. A. Stockman, and T. F. George, "Theory and numeric simulation of optical properties of fractal clusters," Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Stockman, M. I.

S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, "Surface-enhanced parametric scattering of light by silver clusters," Sov. Phys. JETP Lett. 47, 243-246 (1988).

V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 287-294 (1987).

Uysal, S.

Voshchinnikov, N. V.

Waters, L. B. F. M.

Ying, Z. C.

Zakovryashin, N. S.

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Appl. Opt. (3)

Fiz. Khim. Obrab. Mater. (2)

L. G. Astafyeva, A. P. Prishivalko, and S. T. Leiko, "Heating and destruction of hollow aluminum oxide particles by laser radiation," Fiz. Khim. Obrab. Mater. N 5, 27-32 (1997).

L. G. Astafyeva and A. P. Prishivalko, "Heating of aluminum particles with oxide covers by intense laser radiation," Fiz. Khim. Obrab. Mater. N 4, 18-27 (1993).

Int. J. Heat Mass Transfer (1)

L. G. Astafyeva and A. P. Prishivalko, "Heating of solid aerosol particles to intense optical radiation," Int. J. Heat Mass Transfer 41, 489-499 (1998).
[CrossRef]

Inzh.-Fiz. Zh. (1)

L. G. Astafyeva and A. P. Prishivalko, "Heating of metallized particles by high-intensity laser radiation," Inzh.-Fiz. Zh. 66, 340-344 (1994).

J. Mod. Opt. (1)

V. P. Drachev, W. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, "Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity," J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nanotechnology (1)

A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1896 (2004).
[CrossRef]

Phys. Rep. (1)

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275-373 (2000).
[CrossRef]

Phys. Rev. B (2)

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites," Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

V. A. Markel, L. A. Muratov, M. A. Stockman, and T. F. George, "Theory and numeric simulation of optical properties of fractal clusters," Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Phys. Rev. Lett. (2)

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, "Surface-enhanced second-harmonic generation," Phys. Rev. Lett. 46, 145-148 (1981).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, "Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses," Phys. Rev. Lett. 82, 4811-4814 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, "Surface enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Sov. Phys. JETP (1)

V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 287-294 (1987).

Sov. Phys. JETP Lett. (1)

S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, "Surface-enhanced parametric scattering of light by silver clusters," Sov. Phys. JETP Lett. 47, 243-246 (1988).

Teplofiz. Vys. Temp. (1)

L. G. Astafyeva and A. P. Prishivalko, "Heating of homogeneous and hollow particles of aluminum oxide by intense laser radiation," Teplofiz. Vys. Temp. 32, 230-235 (1994).

Other (1)

R. K. Chang and T. E. Furtak, eds., Surface - Enhanced Raman Scattering (Plenum, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Heat source function distribution inside a two-layer sphere with a dye-doped polystyrene core and Ag shell: R 1 = 50 μm, R 2 = 50.035 μm, λ = 0.5 μm. The incident laser beam propagates in the positive direction of the Z axis.

Fig. 2
Fig. 2

Heat source function distribution along the diameter coinciding with the propagation direction of the incident laser beam inside a two-layer sphere with a dye-doped polystyrene core and a Ag shell with (1) R 1 = 50 μm; R 2 = 50.025 μm, and inside a homogeneous spherical dye- doped polystyrene particle with (2) R 1 = R 2 = 50 μm, λ = 0.5 μm. The incident laser beam propagates in the positive direction of the Z axis.

Fig. 3
Fig. 3

Heat source function distribution along the diameter coinciding with the propagation direction of the incident laser beam inside a two-layer sphere with a dye-doped polystyrene core and a Ag shell: (a) R 1 = 20 μm; (b) R 1 = 100 μm; 1, d = R 2R 1 = 25 nm, 2, 50 nm; 3, 100 nm; λ = 0.5 μm. The incident laser beam propagates in the positive direction of the Z axis.

Fig. 4
Fig. 4

Dependences of maximum values of heat source functions inside two-layer spheres on shell thicknesses d for different values of particle cores: 1, R 1 = 20 μm; 2, R 1 = 50 μm; 3, R 1 = 100 μm.

Fig. 5
Fig. 5

Dependences of maximum values of heat source functions inside two-layer spheres on core radii R 1 for different values of particle shell thicknesses: 1, homogeneous spheres (d = 0); 2, d = 18 nm; 3, d = 36 nm.

Fig. 6
Fig. 6

Temperature distribution inside a two-layer sphere with R 1 = 50 μm, R 2 = 50.035 μm, λ = 0.5 μm. The irradiance is 300 W∕cm2. The arrow shows the propagation direction of the incident laser beam.

Fig. 7
Fig. 7

Temperature distribution along the diameter coinciding with the propagation direction of the incident laser beam inside a two-layer sphere with a dye-doped polystyrene core and a Ag shell: (a) R 1 = 20 μm; (b) R 1 = 100 μm; 1, d = R 2R 1 = 25 nm; 2, 150 nm; 3, 200 nm; λ = 0.5 μm. The incident laser beam propagates in the positive direction of the Z axis.

Fig. 8
Fig. 8

Heating time of a two-layer sphere with a dye-doped polystyrene core and a Ag shell up to a maximum temperature of T max = 373 K inside the particle core as a function of shell thicknesses d for 1, R 1 = 20 μm; 2, R 1 = 50 μm; 3, R 1 = 100 μm; 4, R 1 = 200 μm.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

c i ρ i T i t = 1 r 2 r ( K i r 2 T i r ) + 1 r 2 sin θ θ ( K i sin θ T i θ ) + Q i ( r , θ , T i , n i , χ i ) .
Q i ( r , θ , T i , n i , χ i ) = I B i 4 π n i χ i m s λ ,
B i = ( | E r ( i ) | 2 + | E θ ( i ) | 2 ) E 0     2 .
E r ( 1 ) = ( N 1 k 0 r ) 2 cos φ l = 1 l ( l + 1 ) × ψ l ( N 1 k 0 r ) ψ l ( N 1 k 0 R 1 ) A l ( 1 ) Q l ( θ ) sin θ ,
E θ ( 1 ) = ( N 1 k 0 r ) 1 cos φ l = 1 ψ l ( N 1 k 0 r ) ψ l ( N 1 k 0 R 1 ) × [ A l ( 1 ) D l ( N 1 k 0 r ) S l ( θ ) + i B l ( 1 ) Q l ( ϑ ) ] .
E r ( 2 ) = ( N 2 k 0 r ) 2 cos φ l = 1 l ( l + 1 ) [ ψ l ( N 2 k 0 r ) ψ l ( N 2 k 0 R 2 ) A l ( 2 ) + ξ l ( N 2 k 0 r ) ξ l ( N 2 k 0 R 1 ) A ˜ l ( 2 ) ] Q l ( θ ) sin θ ,
E θ ( 2 ) = ( N 2 k 0 r ) 1 cos φ l = 1 [ ψ l ( N 2 k 0 r ) ψ l ( N 2 k 0 R 2 ) A 1 ( 2 ) × D l ( N 2 k 0 r ) + ξ l ( N 2 k 0 r ) ξ l ( N 2 k 0 R 1 ) A ˜ l ( 2 ) ] S l ( θ ) + i [ ψ l ( N 2 k 0 r ) ψ l ( N 2 k 0 R 2 ) B l ( 2 ) + ξ l ( N 2 k 0 r ) ξ l ( N 2 k 0 R 1 ) B ˜ l ( 2 ) ] × Q l ( ϑ ) .
A l ( 1 ) = i l 1 2 l + 1 l ( l + 1 ) N 1 N s 1 ψ l ( N 2 k 0 R 2 ) ξ l ( N 2 k 0 R 1 ) × 1 ξ l ( N s k 0 R 2 ) 1 Δ 1 ,
B l ( 1 ) = i l 1 2 l + 1 l ( l + 1 ) 1 ψ l ( N 2 k 0 R 2 ) ξ l ( N 2 k 0 R 1 ) × 1 ξ l ( N s k 0 R 2 ) 1 Δ 2 ,
A l ( 2 ) = i l 2 l + 1 l ( l + 1 ) N 1 N s 1 ξ l ( N s k 0 R 2 ) L ˜ Δ 2 ,
A ˜ l ( 2 ) = ( i l ) 2 l + 1 l ( l + 1 ) ψ l ( N 2 k 0 R 1 ) ψ l ( N 2 k 0 R 2 ) 1 ξ l ( N s k 0 R 2 ) M ˜ Δ 1 ,
B l ( 2 ) = i l 2 l + 1 l ( l + 1 ) N 2 N s 1 ξ l ( N s k 0 R 2 ) L Δ 1 ,
B ˜ l ( 2 ) = ( i 1 ) 2 l + 1 l ( l + 1 ) N 2 N s ψ l ( N 2 k 0 R 1 ) ψ l ( N 2 k 0 R 2 ) × 1 ξ l ( N s k 0 R 2 ) M Δ 1 ,
Δ 1 = ψ l ( N 2 k 0 R 1 ) ψ l ( N 2 k 0 R 2 ) ξ l ( N 2 k 0 R 2 ) ξ l ( N 2 k 0 R 1 ) M H L F ,
Δ 2 = ψ l ( N 2 k 0 R 1 ) ψ l ( N 2 k 0 R 2 ) ξ l ( N 2 k 0 R 2 ) ξ l ( N 2 k 0 R 1 ) M ˜ H ˜ L ˜ F ˜ ,
F = G l ( N s k 0 R 2 ) N 23 D l ( N 2 k 0 R 2 ) ,
H = G l ( N s k 0 R 2 ) N 23 G l ( N 2 k 0 R 2 ) ,
L = G l ( N 2 k 0 R 1 ) N 12 D l ( N 1 k 0 R 1 ) ,
M = D l ( N 2 k 0 R 1 ) N 12 D l ( N 1 k 0 R 1 ) .
T 1 ( r , θ , 0 ) = T 10 , T 2 ( r , θ , 0 ) = T 20 .
| T 1 ( 0 , θ , t ) | < , 0 θ π , t > 0 ,
T 1 ( R 1 , θ , t ) = T 2 ( R 1 , θ , t ) ,
K 1 ( T 1 ) T 1 ( R 1 , θ , t ) r = K 2 ( T 2 ) T 2 ( R 1 , θ , t ) r ,
K 2 ( T 2 ) T 2 ( R 2 , θ , t ) r = α [ T 2 ( R 2 , θ , t ) T 0 ] + σ ε λ T 2     4 ,
T 1 θ | θ = 0 = T 1 θ | θ = π = 0 , T 2 θ | θ = 0 = T 2 θ | θ = π = 0 ,
α = β P ( 2 π M k T ) 1 / 2 ( c v + 1 2 k ) .

Metrics