Abstract

We present measurements of phase angle curves of intensity and degree of linear polarization of powdery surfaces at two spectral bands centered near 0.44 and 0.63  μm. Three powder samples consisting of nonabsorbing spherical particles of sizes comparable with the wavelengths 0.5, 1.0, and 1.5  μm were examined. The particulate surfaces were measured in the phase angle range of 0.2°–50° by two different photometers and∕or polarimeters. At small phase angles, powdery samples consisting of spherical particles (having very high albedo that resulted in significant multiple scattering) showed prominent features that corresponded to single- particle scattering. These features became more prominent after compressing the surfaces when we changed the packing density of the powders from 0.29 to 0.48. Noticeable differences were observed between polarimetric curves corresponding to different wavelengths. All the samples demonstrated prominent opposition intensity spikes at phase angles <2° likely caused by the coherent backscatter enhancement due to multiple scattering within the particulate surface. The intensity phase curves at these two wavelengths were similar. The photopolarimetric measurements may have broad applications to the interpretation of photometry, spectroscopy, and polarimetry of the ice regoliths of high albedo satellites.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang and K. Voss, "Comparison of bidirectional reflectance distribution function measurements on prepared particulate surfaces and radiative transfer models," Appl. Opt. 44, 597-610 (2005).
    [CrossRef] [PubMed]
  2. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, 1993).
    [CrossRef]
  3. M. I. Mishchenko, J. Dlugach, E. Yanovitskij, and N. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surface," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
    [CrossRef]
  4. Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
    [CrossRef]
  5. Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.
  6. J. Goguen, "A test of the applicability of independent scattering to high albedo planetary regoliths," Lunar Planet. Sci. 24, 541-542 (1993).
  7. Yu. Shkuratov and A. Ovcharenko, "Experimental modeling of opposition effect and negative polarization of regolith-like surfaces," in Optics of Cosmic Dust, G.Videen and M.Kocifa, eds. NATO Science Series, (Kluwer Academic, 2002), pp. 225-238.
  8. Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
    [CrossRef]
  9. A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
    [CrossRef]
  10. V. P. Tishkovets, "Multiple scattering of light by a layer of discrete random medium: backscattering," J. Quant. Spectrosc. Radiat. Transfer 72, 123-137 (2002).
    [CrossRef]
  11. V. P. Tishkovets and M. I. Mishchenko, "Coherent backscattering of light by a layer of discrete random medium," J. Quant. Spectrosc. Radiat. Transfer 86, 161-180 (2004).
    [CrossRef]
  12. M. Mishchenko, V. Tishkovets, and P. Litvinov, "Exact results of the vector theory of coherent backscattering from discrete random media: an overview," in Optics of Cosmic Dust, G.Videen and M.Kocifaj, eds., NATO Science Series, (Kluwer Academic, 2002), pp. 239-260.
  13. P. V. Litvinov, V. P. Tishkovets, K. Muinonen, and G. Videen, "The coherent opposition effect for discrete random media," in Wave Scattering in Complex Media: from Theory to Applications, B.van Tiggelen and S.Skipetrov, eds. (Kluwer Academic, 2003), pp. 567-581.
    [CrossRef]
  14. R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).
  15. V. Weidner and J. Hsia, "Reflection properties of pressed polytetrafluoroethylene powder," J. Opt. Soc. Am. 71, 856-861 (1981).
    [CrossRef]
  16. G. Videen, "Polarization opposition effect and second-order ray tracing," Appl. Opt. 41, 5115-5121 (2002).
    [CrossRef] [PubMed]

2005

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

H. Zhang and K. Voss, "Comparison of bidirectional reflectance distribution function measurements on prepared particulate surfaces and radiative transfer models," Appl. Opt. 44, 597-610 (2005).
[CrossRef] [PubMed]

2004

V. P. Tishkovets and M. I. Mishchenko, "Coherent backscattering of light by a layer of discrete random medium," J. Quant. Spectrosc. Radiat. Transfer 86, 161-180 (2004).
[CrossRef]

2002

G. Videen, "Polarization opposition effect and second-order ray tracing," Appl. Opt. 41, 5115-5121 (2002).
[CrossRef] [PubMed]

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

V. P. Tishkovets, "Multiple scattering of light by a layer of discrete random medium: backscattering," J. Quant. Spectrosc. Radiat. Transfer 72, 123-137 (2002).
[CrossRef]

1999

M. I. Mishchenko, J. Dlugach, E. Yanovitskij, and N. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surface," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).

1993

J. Goguen, "A test of the applicability of independent scattering to high albedo planetary regoliths," Lunar Planet. Sci. 24, 541-542 (1993).

1981

Belskaya, I.

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Bondarenko, S. Y.

A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
[CrossRef]

Chevrel, S. D.

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

Cord, A. M.

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

Daydou, Y. H.

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

Dlugach, J.

M. I. Mishchenko, J. Dlugach, E. Yanovitskij, and N. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surface," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Goguen, J.

J. Goguen, "A test of the applicability of independent scattering to high albedo planetary regoliths," Lunar Planet. Sci. 24, 541-542 (1993).

Hapke, B.

R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, 1993).
[CrossRef]

Helfenstein, P.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

Hsia, J.

Kaydash, V.

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Kreslavsky, M.

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Litvinov, P.

M. Mishchenko, V. Tishkovets, and P. Litvinov, "Exact results of the vector theory of coherent backscattering from discrete random media: an overview," in Optics of Cosmic Dust, G.Videen and M.Kocifaj, eds., NATO Science Series, (Kluwer Academic, 2002), pp. 239-260.

Litvinov, P. V.

P. V. Litvinov, V. P. Tishkovets, K. Muinonen, and G. Videen, "The coherent opposition effect for discrete random media," in Wave Scattering in Complex Media: from Theory to Applications, B.van Tiggelen and S.Skipetrov, eds. (Kluwer Academic, 2003), pp. 567-581.
[CrossRef]

Miloslavskaya, O.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

Mishchenko, M.

M. Mishchenko, V. Tishkovets, and P. Litvinov, "Exact results of the vector theory of coherent backscattering from discrete random media: an overview," in Optics of Cosmic Dust, G.Videen and M.Kocifaj, eds., NATO Science Series, (Kluwer Academic, 2002), pp. 239-260.

Mishchenko, M. I.

V. P. Tishkovets and M. I. Mishchenko, "Coherent backscattering of light by a layer of discrete random medium," J. Quant. Spectrosc. Radiat. Transfer 86, 161-180 (2004).
[CrossRef]

M. I. Mishchenko, J. Dlugach, E. Yanovitskij, and N. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surface," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Muinonen, K.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

P. V. Litvinov, V. P. Tishkovets, K. Muinonen, and G. Videen, "The coherent opposition effect for discrete random media," in Wave Scattering in Complex Media: from Theory to Applications, B.van Tiggelen and S.Skipetrov, eds. (Kluwer Academic, 2003), pp. 567-581.
[CrossRef]

Nelson, R.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).

Nelson, R. M.

A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
[CrossRef]

Omelchenko, V.

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Opanasenko, N.

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Ovcharenko, A.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).

Yu. Shkuratov and A. Ovcharenko, "Experimental modeling of opposition effect and negative polarization of regolith-like surfaces," in Optics of Cosmic Dust, G.Videen and M.Kocifa, eds. NATO Science Series, (Kluwer Academic, 2002), pp. 225-238.

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Ovcharenko, A. A.

A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
[CrossRef]

Petrov, D. V.

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

Piironen, J.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

Pinet, P. C.

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

Rosenbush, V.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

Shkuratov, Yu.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).

Yu. Shkuratov and A. Ovcharenko, "Experimental modeling of opposition effect and negative polarization of regolith-like surfaces," in Optics of Cosmic Dust, G.Videen and M.Kocifa, eds. NATO Science Series, (Kluwer Academic, 2002), pp. 225-238.

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Shkuratov, Yu. G.

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
[CrossRef]

Smyth, W.

R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).

Smythe, W.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

Smythe, W. D.

A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
[CrossRef]

Stankevich, D.

R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).

Stankevich, D. G.

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

Tishkovets, V.

M. Mishchenko, V. Tishkovets, and P. Litvinov, "Exact results of the vector theory of coherent backscattering from discrete random media: an overview," in Optics of Cosmic Dust, G.Videen and M.Kocifaj, eds., NATO Science Series, (Kluwer Academic, 2002), pp. 239-260.

Tishkovets, V. P.

V. P. Tishkovets and M. I. Mishchenko, "Coherent backscattering of light by a layer of discrete random medium," J. Quant. Spectrosc. Radiat. Transfer 86, 161-180 (2004).
[CrossRef]

V. P. Tishkovets, "Multiple scattering of light by a layer of discrete random medium: backscattering," J. Quant. Spectrosc. Radiat. Transfer 72, 123-137 (2002).
[CrossRef]

P. V. Litvinov, V. P. Tishkovets, K. Muinonen, and G. Videen, "The coherent opposition effect for discrete random media," in Wave Scattering in Complex Media: from Theory to Applications, B.van Tiggelen and S.Skipetrov, eds. (Kluwer Academic, 2003), pp. 567-581.
[CrossRef]

Videen, G.

G. Videen, "Polarization opposition effect and second-order ray tracing," Appl. Opt. 41, 5115-5121 (2002).
[CrossRef] [PubMed]

P. V. Litvinov, V. P. Tishkovets, K. Muinonen, and G. Videen, "The coherent opposition effect for discrete random media," in Wave Scattering in Complex Media: from Theory to Applications, B.van Tiggelen and S.Skipetrov, eds. (Kluwer Academic, 2003), pp. 567-581.
[CrossRef]

A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
[CrossRef]

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Voss, K.

Weidner, V.

Yanovitskij, E.

M. I. Mishchenko, J. Dlugach, E. Yanovitskij, and N. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surface," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Zakharova, N.

M. I. Mishchenko, J. Dlugach, E. Yanovitskij, and N. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surface," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Zhang, H.

Zubko, E.

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

Zubko, E. S.

A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
[CrossRef]

Appl. Opt.

Icarus

Yu. G. Shkuratov, D. G. Stankevich, D. V. Petrov, P. C. Pinet, A. M. Cord, Y. H. Daydou, and S. D. Chevrel, "Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering," Icarus 173, 3-15 (2005).
[CrossRef]

Yu. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, R. Nelson, W. Smythe, K. Muinonen, J. Piironen, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structurally simulated planetary regoliths," Icarus 159, 396-416 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Quant. Spectrosc. Radiat. Transfer

V. P. Tishkovets, "Multiple scattering of light by a layer of discrete random medium: backscattering," J. Quant. Spectrosc. Radiat. Transfer 72, 123-137 (2002).
[CrossRef]

V. P. Tishkovets and M. I. Mishchenko, "Coherent backscattering of light by a layer of discrete random medium," J. Quant. Spectrosc. Radiat. Transfer 86, 161-180 (2004).
[CrossRef]

M. I. Mishchenko, J. Dlugach, E. Yanovitskij, and N. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surface," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Lunar Planet. Sci.

J. Goguen, "A test of the applicability of independent scattering to high albedo planetary regoliths," Lunar Planet. Sci. 24, 541-542 (1993).

Other

Yu. Shkuratov and A. Ovcharenko, "Experimental modeling of opposition effect and negative polarization of regolith-like surfaces," in Optics of Cosmic Dust, G.Videen and M.Kocifa, eds. NATO Science Series, (Kluwer Academic, 2002), pp. 225-238.

A. A. Ovcharenko, S. Y. Bondarenko, E. S. Zubko, Yu. G. Shkuratov, G. Videen, R. M. Nelson and W. D. Smythe, "Particle size effect on the opposition spike and negative polarization," J. Quant Spectrosc. Radiat. Transfer, doi:.
[CrossRef]

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, 1993).
[CrossRef]

Yu. Shkuratov, G. Videen, M. Kreslavsky, I. Belskaya, A. Ovcharenko, V. Kaydash, V. Omelchenko, N. Opanasenko, and E. Zubko, "Scattering properties of planetary regoliths near opposition," in Photopolarimetry in Remote Sensing, G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., NATO Science Series, (Kluwer Academic, 2004), pp. 191-208.

M. Mishchenko, V. Tishkovets, and P. Litvinov, "Exact results of the vector theory of coherent backscattering from discrete random media: an overview," in Optics of Cosmic Dust, G.Videen and M.Kocifaj, eds., NATO Science Series, (Kluwer Academic, 2002), pp. 239-260.

P. V. Litvinov, V. P. Tishkovets, K. Muinonen, and G. Videen, "The coherent opposition effect for discrete random media," in Wave Scattering in Complex Media: from Theory to Applications, B.van Tiggelen and S.Skipetrov, eds. (Kluwer Academic, 2003), pp. 567-581.
[CrossRef]

R. Nelson, B. Hapke, W. Smyth, Yu. Shkuratov, A. Ovcharenko, and D. Stankevich, "The reflectance phase curves at very small phase angle: a comparative study of two goniometers," Lunar Planet. Sci. 30, Abstract No. 2068 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

SEM images of approximately spherical particles of size (a) 1.5 μm, (b) 1.0 μm, and (c) 0.5 μm. (d) A SEM image of a 0.5 μm particle agglomerate formed after drying of alcohol suspension.

Fig. 2
Fig. 2

Photometric and polarimetric phase curves for substrates consisting of spherical particles with 0.5 μm diameter at the two spectral ranges. Measurements are carried out with the large-phase-angle instrument. The intensity is normalized to unity at phase angle 10°.

Fig. 3
Fig. 3

Photometric and polarimetric phase curves as in Fig. 2 with 1.0 μm particles.

Fig. 4
Fig. 4

Photometric and polarimetric phase curves as in Fig. 2 with 1.5 μm particles.

Fig. 5
Fig. 5

Photometric and polarimetric phase curves for substrates consisting of spherical particles with 0.5 μm diameter at the two spectral ranges. Measurements are carried out with the small-phase-angle instrument. The intensity is normalized to 1 at phase angle 0.2°.

Fig. 6
Fig. 6

Photometric and polarimetric phase curves as in Fig. 5 with 1.0 μm particles.

Fig. 7
Fig. 7

Photometric and polarimetric phase curves as in Fig. 5 with 1.5 μm particles.

Fig. 8
Fig. 8

Calculated phase curves of intensity and polarization degree for single silica spheres with particle sizes 0.5 μm (curve 1), 1 μm (curve 2), and 1.5 μm (curve 3) in red light. The Mie theory is used for calculations at m = 1.51 + i0.

Fig. 9
Fig. 9

Calculated phase curves as in Fig. 8 in blue light.

Fig. 10
Fig. 10

Photometric and polarimetric phase curves for substrates consisting of uncompressed (initial) and compressed spherical particles with a diameter of 0.5 μm in red light. The measurements are carried out with the large-phase-angle instrument. The intensity is normalized to unity at phase angle 10°.

Fig. 11
Fig. 11

Photometric and polarimetric curves as in Fig. 10 with 1.0 μm particles.

Fig. 12
Fig. 12

Photometric and polarimetric curves as in Fig. 10 with 1.5 μm particles.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

0.63   μm
1.5   μm
< 2 °
600   μm
α = 0.2 ° 17 °
α = π θ
λ blue = 0.44   μm
λ red = 0.63   μm
10 %
0.05 %
0.05 %
20   mm
3 4   mm
0.589   μm
1.5   μm
0.02   μm
1.5   μm
0.5   μm
0.29
0.48
119 %
122 %
126 %
1.5   μm
119 %
m = 1.51 + i 0
< 2 °
0.5   μm
0.5   μm
1.5   μm
1.0   μm
20 %
2 °
1.5   μm

Metrics