Abstract

A simple scheme for generation of high power in the midinfrared is demonstrated. By using a 15  W thulium-doped fiber laser emitting at 1907  nm to pump a Q-switched Ho:YAG laser, we obtained 9.8  W   at   2096   nm at a 20  kHz pulse repetition rate with excellent beam quality. The output of this laser was used to pump a doubly resonant zinc germanium phosphide based optical parametric oscillator, and we obtained 5.1  W average power in the 35  μm range with M21.8.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B 17, 723-728 (2000).
    [CrossRef]
  2. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, "Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam," Opt. Lett. 25, 1654-1656 (2000).
    [CrossRef]
  3. C. Bollig, R. A. Hayward, W. A. Clarkson, and D. C. Hanna, "2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser," Opt. Lett. 23, 1757-1759(1998).
    [CrossRef]
  4. M. Schellhorn, A. Hirth, and C. Kieleck, "Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser," Opt. Lett. 28, 1933-1935 (2003).
    [CrossRef] [PubMed]
  5. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-power/high-brightness diode-pumped 1.9-μm Thulium and resonantly pumped 2.1-μm Holmium lasers," IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
    [CrossRef]
  6. E. Lippert, G. Arisholm, G. Rustad, and K. Stenersen, "Fiber laser pumped mid-IR source," in Advanced Solid State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 292-297.
  7. E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).
  8. D. Y. Shen, W. A. Clarkson, L. J. Cooper, and R. B. Williams, "Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser," Opt. Lett. 29, 2396-2398 (2004).
    [CrossRef] [PubMed]
  9. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, "Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser," Appl. Phys. B 79, 559-561 (2004).
  10. A. Dergachev, P. F. Moulton, and T. E. Drake, "High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser," in Advanced Solid State Photonics, C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 608-612.
  11. H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).
  12. P. Peterson, A. Gavrielides, and P. M. Sharma, "CW theory of a laser-diode- pumped two-manifold solid-state laser," Opt. Commun. 109, 282-287 (1994).
    [CrossRef]
  13. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992).
    [CrossRef]
  14. J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
    [CrossRef]
  15. L. B. Shaw, R. S. F. Chang, and N. Djeu, "Measurement of up-conversion energy- transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12," Phys. Rev. B 50, 6609-6619 (1994).
    [CrossRef]
  16. N. P. Barnes, B. M. Walsh, and E. D. Filer, "Ho:Ho upconversion: applications to Ho lasers," J. Opt. Soc. Am. B 20, 1212-1219 (2003).
    [CrossRef]
  17. S. R. Bowman, J. E. Tucker, and S. Kirkpatrick, "Progress in the modeling of migration limited energy transfer in laser materials," in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 519-523.
  18. K. Stenersen, E. Lippert, G. Rustad, and G. Arisholm, Thermal effects in end-pumped solid state laser - influence on resonator stability, beam quality, and output power, Internal Report FFI-Rapport 2001/03865 (Norwegian Defence Research Establishment, 2001), http://rapporter.ffi.no/rapporter/2001/03865.pdf.
    [PubMed]
  19. IOS, "Lasers and laser-related equipment - Test methods for laser beam parameters - Beam widths, divergence angle and beam propagation factor - Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods," IOS Rep. 11146-3 (International Organization for Standardization, 2004).
  20. G. Arisholm, "General numerical methods for simulating second-order nonlinear interactions in birefringent media," J. Opt. Soc. Am. B 14, 2543-2549 (1997).
    [CrossRef]
  21. G. Arisholm, "Advanced numerical simulation models for second-order nonlinear interactions," in Fundamental Problems of Laser Optics, N. N. Rosanov, ed., Proc. SPIE 3685, 86-97 (1998).
  22. G. Arisholm, "Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators," J. Opt. Soc. Am. B 16, 117-127 (1999).
    [CrossRef]
  23. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, "Parametric amplification and oscillation with walkoff-compensating crystals," J. Opt. Soc. Am. B 14, 460-474 (1997).
    [CrossRef]
  24. G. Ghosh, "Sellmeier coefficients for the birefringence and refractive indices of ZnGeP2 nonlinear crystal at different temperatures," Appl. Opt. 37, 1205-1212 (1998).
    [CrossRef]

2004 (3)

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, "Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser," Appl. Phys. B 79, 559-561 (2004).

E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).

D. Y. Shen, W. A. Clarkson, L. J. Cooper, and R. B. Williams, "Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser," Opt. Lett. 29, 2396-2398 (2004).
[CrossRef] [PubMed]

2003 (2)

2000 (3)

1999 (1)

1998 (2)

1997 (2)

1994 (2)

P. Peterson, A. Gavrielides, and P. M. Sharma, "CW theory of a laser-diode- pumped two-manifold solid-state laser," Opt. Commun. 109, 282-287 (1994).
[CrossRef]

L. B. Shaw, R. S. F. Chang, and N. Djeu, "Measurement of up-conversion energy- transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12," Phys. Rev. B 50, 6609-6619 (1994).
[CrossRef]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992).
[CrossRef]

1991 (1)

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

Abdolvand, A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, "Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser," Appl. Phys. B 79, 559-561 (2004).

Alford, W. J.

Arisholm, G.

E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).

G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, "Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam," Opt. Lett. 25, 1654-1656 (2000).
[CrossRef]

G. Arisholm, "Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators," J. Opt. Soc. Am. B 16, 117-127 (1999).
[CrossRef]

G. Arisholm, "General numerical methods for simulating second-order nonlinear interactions in birefringent media," J. Opt. Soc. Am. B 14, 2543-2549 (1997).
[CrossRef]

G. Arisholm, "Advanced numerical simulation models for second-order nonlinear interactions," in Fundamental Problems of Laser Optics, N. N. Rosanov, ed., Proc. SPIE 3685, 86-97 (1998).

E. Lippert, G. Arisholm, G. Rustad, and K. Stenersen, "Fiber laser pumped mid-IR source," in Advanced Solid State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 292-297.

K. Stenersen, E. Lippert, G. Rustad, and G. Arisholm, Thermal effects in end-pumped solid state laser - influence on resonator stability, beam quality, and output power, Internal Report FFI-Rapport 2001/03865 (Norwegian Defence Research Establishment, 2001), http://rapporter.ffi.no/rapporter/2001/03865.pdf.
[PubMed]

Armstrong, D. J.

Barnes, N. P.

Bollig, C.

Bowers, M. S.

Bowman, S. R.

S. R. Bowman, J. E. Tucker, and S. Kirkpatrick, "Progress in the modeling of migration limited energy transfer in laser materials," in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 519-523.

Budni, P. A.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-power/high-brightness diode-pumped 1.9-μm Thulium and resonantly pumped 2.1-μm Holmium lasers," IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B 17, 723-728 (2000).
[CrossRef]

Chang, R. S. F.

L. B. Shaw, R. S. F. Chang, and N. Djeu, "Measurement of up-conversion energy- transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12," Phys. Rev. B 50, 6609-6619 (1994).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992).
[CrossRef]

Chicklis, E. P.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B 17, 723-728 (2000).
[CrossRef]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-power/high-brightness diode-pumped 1.9-μm Thulium and resonantly pumped 2.1-μm Holmium lasers," IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

Clarkson, W. A.

Clough, S. A.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).

Cooper, L. J.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, "Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser," Appl. Phys. B 79, 559-561 (2004).

D. Y. Shen, W. A. Clarkson, L. J. Cooper, and R. B. Williams, "Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser," Opt. Lett. 29, 2396-2398 (2004).
[CrossRef] [PubMed]

Dergachev, A.

A. Dergachev, P. F. Moulton, and T. E. Drake, "High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser," in Advanced Solid State Photonics, C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 608-612.

Djeu, N.

L. B. Shaw, R. S. F. Chang, and N. Djeu, "Measurement of up-conversion energy- transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12," Phys. Rev. B 50, 6609-6619 (1994).
[CrossRef]

Drake, T. E.

A. Dergachev, P. F. Moulton, and T. E. Drake, "High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser," in Advanced Solid State Photonics, C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 608-612.

Dube, D. J.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).

Filer, E. D.

Gardner, M. E.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).

Gavrielides, A.

P. Peterson, A. Gavrielides, and P. M. Sharma, "CW theory of a laser-diode- pumped two-manifold solid-state laser," Opt. Commun. 109, 282-287 (1994).
[CrossRef]

Ghosh, G.

Gruber, J. B.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

Hanna, D. C.

Hayward, R. A.

Hills, M. E.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

Hirth, A.

Kieleck, C.

Kirkpatrick, S.

S. R. Bowman, J. E. Tucker, and S. Kirkpatrick, "Progress in the modeling of migration limited energy transfer in laser materials," in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 519-523.

Kneizys, F. X.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).

Kokta, M. R.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992).
[CrossRef]

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-power/high-brightness diode-pumped 1.9-μm Thulium and resonantly pumped 2.1-μm Holmium lasers," IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B 17, 723-728 (2000).
[CrossRef]

Lippert, E.

E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).

G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, "Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam," Opt. Lett. 25, 1654-1656 (2000).
[CrossRef]

E. Lippert, G. Arisholm, G. Rustad, and K. Stenersen, "Fiber laser pumped mid-IR source," in Advanced Solid State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 292-297.

K. Stenersen, E. Lippert, G. Rustad, and G. Arisholm, Thermal effects in end-pumped solid state laser - influence on resonator stability, beam quality, and output power, Internal Report FFI-Rapport 2001/03865 (Norwegian Defence Research Establishment, 2001), http://rapporter.ffi.no/rapporter/2001/03865.pdf.
[PubMed]

Miller, C. A.

Morrison, C. A.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

Mosto, J. R.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B 17, 723-728 (2000).
[CrossRef]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-power/high-brightness diode-pumped 1.9-μm Thulium and resonantly pumped 2.1-μm Holmium lasers," IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

Moulton, P. F.

A. Dergachev, P. F. Moulton, and T. E. Drake, "High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser," in Advanced Solid State Photonics, C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 608-612.

Nicolas, S.

E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992).
[CrossRef]

Peterson, P.

P. Peterson, A. Gavrielides, and P. M. Sharma, "CW theory of a laser-diode- pumped two-manifold solid-state laser," Opt. Commun. 109, 282-287 (1994).
[CrossRef]

Pomeranz, L. A.

Raymond, T. D.

Rosanov, N. N.

G. Arisholm, "Advanced numerical simulation models for second-order nonlinear interactions," in Fundamental Problems of Laser Optics, N. N. Rosanov, ed., Proc. SPIE 3685, 86-97 (1998).

Rothman, L. S.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).

Rustad, G.

E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).

G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, "Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam," Opt. Lett. 25, 1654-1656 (2000).
[CrossRef]

E. Lippert, G. Arisholm, G. Rustad, and K. Stenersen, "Fiber laser pumped mid-IR source," in Advanced Solid State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 292-297.

K. Stenersen, E. Lippert, G. Rustad, and G. Arisholm, Thermal effects in end-pumped solid state laser - influence on resonator stability, beam quality, and output power, Internal Report FFI-Rapport 2001/03865 (Norwegian Defence Research Establishment, 2001), http://rapporter.ffi.no/rapporter/2001/03865.pdf.
[PubMed]

Schellhorn, M.

Seltzer, M. D.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

Sharma, P. M.

P. Peterson, A. Gavrielides, and P. M. Sharma, "CW theory of a laser-diode- pumped two-manifold solid-state laser," Opt. Commun. 109, 282-287 (1994).
[CrossRef]

Shaw, L. B.

L. B. Shaw, R. S. F. Chang, and N. Djeu, "Measurement of up-conversion energy- transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12," Phys. Rev. B 50, 6609-6619 (1994).
[CrossRef]

Shen, D. Y.

D. Y. Shen, W. A. Clarkson, L. J. Cooper, and R. B. Williams, "Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser," Opt. Lett. 29, 2396-2398 (2004).
[CrossRef] [PubMed]

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, "Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser," Appl. Phys. B 79, 559-561 (2004).

Smith, A. V.

Smith, H. J. P.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992).
[CrossRef]

Stenersen, K.

E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).

G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, "Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam," Opt. Lett. 25, 1654-1656 (2000).
[CrossRef]

E. Lippert, G. Arisholm, G. Rustad, and K. Stenersen, "Fiber laser pumped mid-IR source," in Advanced Solid State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 292-297.

K. Stenersen, E. Lippert, G. Rustad, and G. Arisholm, Thermal effects in end-pumped solid state laser - influence on resonator stability, beam quality, and output power, Internal Report FFI-Rapport 2001/03865 (Norwegian Defence Research Establishment, 2001), http://rapporter.ffi.no/rapporter/2001/03865.pdf.
[PubMed]

Stevens, S. B.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

Tucker, J. E.

S. R. Bowman, J. E. Tucker, and S. Kirkpatrick, "Progress in the modeling of migration limited energy transfer in laser materials," in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 519-523.

Turner, G. A.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

Walsh, B. M.

Williams, R. B.

Appl. Opt. (1)

Appl. Phys. (1)

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, "Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser," Appl. Phys. B 79, 559-561 (2004).

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-power/high-brightness diode-pumped 1.9-μm Thulium and resonantly pumped 2.1-μm Holmium lasers," IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

P. Peterson, A. Gavrielides, and P. M. Sharma, "CW theory of a laser-diode- pumped two-manifold solid-state laser," Opt. Commun. 109, 282-287 (1994).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. (1)

L. B. Shaw, R. S. F. Chang, and N. Djeu, "Measurement of up-conversion energy- transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12," Phys. Rev. B 50, 6609-6619 (1994).
[CrossRef]

Other (8)

S. R. Bowman, J. E. Tucker, and S. Kirkpatrick, "Progress in the modeling of migration limited energy transfer in laser materials," in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 519-523.

K. Stenersen, E. Lippert, G. Rustad, and G. Arisholm, Thermal effects in end-pumped solid state laser - influence on resonator stability, beam quality, and output power, Internal Report FFI-Rapport 2001/03865 (Norwegian Defence Research Establishment, 2001), http://rapporter.ffi.no/rapporter/2001/03865.pdf.
[PubMed]

IOS, "Lasers and laser-related equipment - Test methods for laser beam parameters - Beam widths, divergence angle and beam propagation factor - Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods," IOS Rep. 11146-3 (International Organization for Standardization, 2004).

G. Arisholm, "Advanced numerical simulation models for second-order nonlinear interactions," in Fundamental Problems of Laser Optics, N. N. Rosanov, ed., Proc. SPIE 3685, 86-97 (1998).

E. Lippert, G. Arisholm, G. Rustad, and K. Stenersen, "Fiber laser pumped mid-IR source," in Advanced Solid State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 292-297.

E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).

A. Dergachev, P. F. Moulton, and T. E. Drake, "High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser," in Advanced Solid State Photonics, C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 608-612.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup of the total system: M1–M5, mirrors; L1–L6, lenses. The details of the setup are described in more detail in Subsections 3.C. and 4.B.

Fig. 2
Fig. 2

Top view of the Ho laser–OPO system. The fiber collimator can be seen in the lower right-hand corner.

Fig. 3
Fig. 3

Measured Ho:YAG effective absorption cross section (dashed curve) and calculated transmission through 1 m of standard atmosphere (20 °C, 50% relative humidity) according to FASCODE 3 (Ref. 11) and HITRAN 96 (solid curve).

Fig. 4
Fig. 4

Calculated single- and double-pass absorption efficiency at 1907 nm in Ho:YAG for G = 1.5 (solid curve), G = 1 (dashed curve), and for the case with negligible pumping, i.e., Beer's law (dotted curve).

Fig. 5
Fig. 5

Average upconversion lifetime for different dopant concentrations and high (N2 N Ho = 0.32) and moderate (N2 N Ho = 0.2) inversion levels.

Fig. 6
Fig. 6

Output power at 2.1 μm and pulse length (FWHM) as a function of pump power.

Fig. 7
Fig. 7

Calculated output power from a ZGP OPO with φ = 0° and 90° and φ = 0° and 0° with flat thermal profiles, and with φ = 0° and 90° accounting for the thermal profile.

Fig. 8
Fig. 8

Experimental output power as a function of launched pump power compared with simulations accounting for the measured pulse lengths for different pump energies and for the thermal profiles in ZGP.

Fig. 9
Fig. 9

Measured output spectrum.

Tables (2)

Tables Icon

Table 1 Summary of Ho:YAG Material Parameters Used a

Tables Icon

Table 2 Deduced Values for the Product U UC k Loss in Units of 10−18 cm3 s−1

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d i p d z = σ abs f a N 0 [ 1 ( 1 + f b f a ) N 2 N 0 ] i p
= α 0 ( 1 f x N 2 N 0 ) i p ,
ln G = 2 σ em 0 l m Δ N ( z ) d z
= 2 σ em [ 0 l m ( f u + f l ) N 2 ( z ) d z f l N 0 l m ] ,
η abs = 1 ( G ( σ abs f a / 2 σ em   f l ) f x f s e σ abs f a N 0 l m ( 1 f x f s ) ) P
1 ( G 0.92 e 1 . 3 6 D Ho l m ) P ,
τ UC = ( U UC k Loss N 2 ) 1 ,

Metrics