Abstract

We report, to the best of our knowledge, the first demonstration of heterodyne detection of a glint target using an InGaAs avalanche photodiode detector (APD) array in the Geiger mode. Due to the finite number of pixels, all such photon-counting arrays necessarily suffer from saturation effects. At large photon fluxes, saturation of the APD degrades the Doppler frequency resolution and the signal-to-noise ratio (SNR). We derive analytical expressions for the Doppler resolution and SNR, taking saturation effects into account. The optimal local oscillator power can be obtained numerically from the SNR expression.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, "Low-noise single-photon detection at wavelength 1.55 μm," Electron. Lett. 37, 1081-1083 (2001).
    [CrossRef]
  2. R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon-counting 1060-nm bybrid photomultiplier with high quantum efficiency," IEEE Electron Device Lett. 20, 126-128 (1999).
    [CrossRef]
  3. R. A. LaRue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon-counting III-V hybrid photomultiplier using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
    [CrossRef]
  4. P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, "Photon counting with passively quenched germanium avalanche," Appl. Opt. 33, 6895-6901 (1994).
    [CrossRef] [PubMed]
  5. A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, "Single photon detection beyond 1 μm: performance of commercially available germanium photodiodes," Appl. Opt. 33, 6902-6918 (1994).
    [CrossRef] [PubMed]
  6. M. Tanaka, S. Sakurai, F. Kobayashi, Y. Saito, T. Kano, and A. Nomura, "Possibility of photon counting in near-infrared (0.8-1.5 μm) region by Ge-APD," presented at the Seventeenth International Laser Radar Conference, Sendai, Japan, 1994.
  7. A. Lacaita, F. Zappa, S. Cova, and P. Lovatai, "Single photon detection beyond 1 μm: performance of commercially available In GaAs/InP detectors," Appl. Opt. 35, 2986-2996 (1996).
    [CrossRef] [PubMed]
  8. T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
    [CrossRef]
  9. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).
  10. R. M. Marino, R. M. Spitzberg, and M. J. Bohrer, "A photon-counting 3D imaging laser radar for advanced discriminating interceptor seekers," presented at the Second Annual AIAA SDIO Interceptor Technology Conference, Albuquerque, N. Mex., 6-9 June 1993.
  11. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).
  12. J. Ashcom, MIT Lincoln Laboratory, 244 Wood street, Lexington, Mass. 02420, (personal communication, 2004).
  13. K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
    [CrossRef]
  14. J. Ashcom, MIT Lincoln Laboratory, 244 Wood Street, Lexington, Mass. 02420, (personal communication, 2005).
  15. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, 1978).

2002 (4)

T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
[CrossRef]

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

2001 (1)

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, "Low-noise single-photon detection at wavelength 1.55 μm," Electron. Lett. 37, 1081-1083 (2001).
[CrossRef]

1999 (1)

R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon-counting 1060-nm bybrid photomultiplier with high quantum efficiency," IEEE Electron Device Lett. 20, 126-128 (1999).
[CrossRef]

1997 (1)

R. A. LaRue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon-counting III-V hybrid photomultiplier using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

1996 (1)

1994 (2)

Aebi, V. W.

R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon-counting 1060-nm bybrid photomultiplier with high quantum efficiency," IEEE Electron Device Lett. 20, 126-128 (1999).
[CrossRef]

R. A. LaRue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon-counting III-V hybrid photomultiplier using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Albota, M. A.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Ashcom, J.

J. Ashcom, MIT Lincoln Laboratory, 244 Wood street, Lexington, Mass. 02420, (personal communication, 2004).

J. Ashcom, MIT Lincoln Laboratory, 244 Wood Street, Lexington, Mass. 02420, (personal communication, 2005).

Aull, B. F.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

Bohrer, M. J.

R. M. Marino, R. M. Spitzberg, and M. J. Bohrer, "A photon-counting 3D imaging laser radar for advanced discriminating interceptor seekers," presented at the Second Annual AIAA SDIO Interceptor Technology Conference, Albuquerque, N. Mex., 6-9 June 1993.

Buller, G. S.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, "Low-noise single-photon detection at wavelength 1.55 μm," Electron. Lett. 37, 1081-1083 (2001).
[CrossRef]

Calawa, S. D.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Costello, K. A.

R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon-counting 1060-nm bybrid photomultiplier with high quantum efficiency," IEEE Electron Device Lett. 20, 126-128 (1999).
[CrossRef]

R. A. LaRue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon-counting III-V hybrid photomultiplier using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Cova, S.

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

Davis, G. A.

R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon-counting 1060-nm bybrid photomultiplier with high quantum efficiency," IEEE Electron Device Lett. 20, 126-128 (1999).
[CrossRef]

R. A. LaRue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon-counting III-V hybrid photomultiplier using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Donnelly, J. P.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Duerr, E. K.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Edgecumbe, J. P.

R. A. LaRue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon-counting III-V hybrid photomultiplier using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Felton, B. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

Fouche, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Francese, P. A.

Groves, S. H.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Heinrichs, R. M.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Hiskett, P. A.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, "Low-noise single-photon detection at wavelength 1.55 μm," Electron. Lett. 37, 1081-1083 (2001).
[CrossRef]

Kano, T.

M. Tanaka, S. Sakurai, F. Kobayashi, Y. Saito, T. Kano, and A. Nomura, "Possibility of photon counting in near-infrared (0.8-1.5 μm) region by Ge-APD," presented at the Seventeenth International Laser Radar Conference, Sendai, Japan, 1994.

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, 1978).

Knight, D.

Kobayashi, F.

M. Tanaka, S. Sakurai, F. Kobayashi, Y. Saito, T. Kano, and A. Nomura, "Possibility of photon counting in near-infrared (0.8-1.5 μm) region by Ge-APD," presented at the Seventeenth International Laser Radar Conference, Sendai, Japan, 1994.

Kocher, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Kudo, M.

T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
[CrossRef]

Lacaita, A.

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

LaRue, R. A.

R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon-counting 1060-nm bybrid photomultiplier with high quantum efficiency," IEEE Electron Device Lett. 20, 126-128 (1999).
[CrossRef]

R. A. LaRue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon-counting III-V hybrid photomultiplier using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

Lovatai, P.

Mahoney, L. J.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Marino, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

R. M. Marino, R. M. Spitzberg, and M. J. Bohrer, "A photon-counting 3D imaging laser radar for advanced discriminating interceptor seekers," presented at the Second Annual AIAA SDIO Interceptor Technology Conference, Albuquerque, N. Mex., 6-9 June 1993.

Maruyama, T.

T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
[CrossRef]

McIntosh, K. A.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Molva, K. M.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Mooney, J. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Napoleone, A.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Narusawa, F.

T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
[CrossRef]

Newbury, N. R.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Nomura, A.

T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
[CrossRef]

M. Tanaka, S. Sakurai, F. Kobayashi, Y. Saito, T. Kano, and A. Nomura, "Possibility of photon counting in near-infrared (0.8-1.5 μm) region by Ge-APD," presented at the Seventeenth International Laser Radar Conference, Sendai, Japan, 1994.

Oakley, D. C.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

O'Brien, M. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Owens, P. C. M.

Player, B. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Pudvay, D.

R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon-counting 1060-nm bybrid photomultiplier with high quantum efficiency," IEEE Electron Device Lett. 20, 126-128 (1999).
[CrossRef]

Rarity, J. G.

Saito, Y.

T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
[CrossRef]

M. Tanaka, S. Sakurai, F. Kobayashi, Y. Saito, T. Kano, and A. Nomura, "Possibility of photon counting in near-infrared (0.8-1.5 μm) region by Ge-APD," presented at the Seventeenth International Laser Radar Conference, Sendai, Japan, 1994.

Sakurai, S.

M. Tanaka, S. Sakurai, F. Kobayashi, Y. Saito, T. Kano, and A. Nomura, "Possibility of photon counting in near-infrared (0.8-1.5 μm) region by Ge-APD," presented at the Seventeenth International Laser Radar Conference, Sendai, Japan, 1994.

Shaver, D. C.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Smith, J. M.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, "Low-noise single-photon detection at wavelength 1.55 μm," Electron. Lett. 37, 1081-1083 (2001).
[CrossRef]

Spitzberg, R. M.

R. M. Marino, R. M. Spitzberg, and M. J. Bohrer, "A photon-counting 3D imaging laser radar for advanced discriminating interceptor seekers," presented at the Second Annual AIAA SDIO Interceptor Technology Conference, Albuquerque, N. Mex., 6-9 June 1993.

Tanaka, M.

T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
[CrossRef]

M. Tanaka, S. Sakurai, F. Kobayashi, Y. Saito, T. Kano, and A. Nomura, "Possibility of photon counting in near-infrared (0.8-1.5 μm) region by Ge-APD," presented at the Seventeenth International Laser Radar Conference, Sendai, Japan, 1994.

Tapster, P. R.

Townsend, P. D.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, "Low-noise single-photon detection at wavelength 1.55 μm," Electron. Lett. 37, 1081-1083 (2001).
[CrossRef]

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, "Photon counting with passively quenched germanium avalanche," Appl. Opt. 33, 6895-6901 (1994).
[CrossRef] [PubMed]

Willard, B. C.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

Zappa, F.

Zayhowski, J. J.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molva, E. K. Duerr, S. H. Groves, and D. C. Shaver, "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Electron. Lett. (1)

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, "Low-noise single-photon detection at wavelength 1.55 μm," Electron. Lett. 37, 1081-1083 (2001).
[CrossRef]

IEEE Electron Device Lett. (1)

R. A. LaRue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon-counting 1060-nm bybrid photomultiplier with high quantum efficiency," IEEE Electron Device Lett. 20, 126-128 (1999).
[CrossRef]

IEEE Trans. Electron Devices (1)

R. A. LaRue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon-counting III-V hybrid photomultiplier using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997).
[CrossRef]

Lincoln Lab. J. (2)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, "Geiger-mode avalanche photodiodes for three-dimensional imaging," Lincoln Lab. J. 13, 335-348 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Lab. J. 13, 351-366 (2002).

Opt. Eng. (1)

T. Maruyama, F. Narusawa, M. Kudo, M. Tanaka, Y. Saito, and A. Nomura, "Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode," Opt. Eng. 41, 395-402 (2002).
[CrossRef]

Other (5)

J. Ashcom, MIT Lincoln Laboratory, 244 Wood Street, Lexington, Mass. 02420, (personal communication, 2005).

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, 1978).

J. Ashcom, MIT Lincoln Laboratory, 244 Wood street, Lexington, Mass. 02420, (personal communication, 2004).

R. M. Marino, R. M. Spitzberg, and M. J. Bohrer, "A photon-counting 3D imaging laser radar for advanced discriminating interceptor seekers," presented at the Second Annual AIAA SDIO Interceptor Technology Conference, Albuquerque, N. Mex., 6-9 June 1993.

M. Tanaka, S. Sakurai, F. Kobayashi, Y. Saito, T. Kano, and A. Nomura, "Possibility of photon counting in near-infrared (0.8-1.5 μm) region by Ge-APD," presented at the Seventeenth International Laser Radar Conference, Sendai, Japan, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. The laser transmitter is shown on top and the receiver is shown on the bottom. EOM, electro-optic modulator; DET, detector; POL, polarizer; YDFA, ytterbium-doped fiber amplifier; COL, collimator; HWP, half-wave plate; QWP, quarter-wave plate; BS, beam splitter; ND, neutral density filter.

Fig. 2
Fig. 2

APD array on–off time and transmitter burst pulse waveform.

Fig. 3
Fig. 3

(a) Typical image (with a mirror as a target). The gray scale corresponds to the probability of detection (the scaling is indicated by the vertical bar to the right of the image). (b) The PSD of (a), showing a clear signal at fif = 50 MHz.

Fig. 4
Fig. 4

Number of photoelectrons recorded as a function of time for three different flux rates. The numbers plotted correspond to (dN∕dtt, where dN∕dt is the photoelectron arrival rate [see Eq. (5)] and Δt = 0.5 ns is the counting time interval. The distributions are fitted to a negative exponential modulated by a sinusoid [Eq. (5)] and the best-fit exponent λ0N 0 is indicated.

Fig. 5
Fig. 5

PSDs for the data shown in Fig. 4. Only the portion of the PSD in the vicinity of the beat frequency is shown. The black circles denote the PSDs, and the solid curves denote Lorentzian profiles from Eq. (10). There is good agreement between the model and the data.

Fig. 6
Fig. 6

SNRs as a function of the number of signal photons (NS ). The black circles denote the measured SNR (see text). The error bars represent excursions in the SNR due to the fluctuations in m and Ndark during the experiments. The dashed curve is the SNR predicted by Eq. (14), and the solid curve is the SNR predicted by Eq. (18).

Fig. 7
Fig. 7

SNR vs NLO , as predicted by Eq. (14) (dashed curve) and Eq. (18) (solid curve), for various NS . The black circles denote NLO opt , the optimal NLO that maximizes the SNR [see Eq. (18)], using the experimental values m = 0.4, N0 = 196, and Ndark = 27.9.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

d N ( t ) = λ ( t ) N ( t ) N 0  d t .
λ ( t ) = λ 0 [ 1 + a cos ( ω i f t + ϕ ) ] ,
a = 2 m N L O N S N L O + N S ,
N ( t ) = N 0 exp λ 0 N 0 t λ 0 a N 0 ω i f sin ( ω i f t ) ,
t 0 , t 0 ,
d N / d t = λ 0 [ 1 + a cos ( ω i f t ) ] × exp [ λ 0 N 0 t λ 0 a N 0 ω i f sin ( ω i f t ) ] .
exp [ λ 0 N 0 t λ 0 a N 0 ω i f sin ( ω i f t ) ] exp ( λ 0 N 0 t ) [ 1 λ 0 a N 0 ω i f sin ( ω i f t ) ] exp ( λ 0 N 0 t ) .
d N / d t λ 0 [ 1 + a cos ( ω i f t ) ] exp ( λ 0 N 0 t ) .
i ( t ) = i L O + i S + 2 m i L O i S cos ( ω i f t )
= i d c [ 1 + 2 m i L O i S i L O + i S cos ( ω i f t ) ] ,
{ d N / d t } = 0 T λ 0 [ 1 + a cos ( ω i f t ) ] exp ( λ 0 N 0 t j ω t ) d t
= λ 0 0 T exp ( λ 0 N 0 t j ω t )  d t + λ 0 a 0 T cos ( ω i f t ) exp ( λ 0 N 0 t j ω t )  d t ,
λ 0 ( λ 0 N 0 + j ω ) { exp ( λ 0 T N 0 ) [ cos ( ω T ) j sin ( ω T ) ] 1 } ,
λ 0 a 2 0 T exp ( λ 0 N 0 t j ω t ) [ exp ( j ω i f t ) + exp ( j ω i f t ) ] d t = λ 0 a 2 { exp [ λ 0 N 0 T j ( ω ω i f ) T ] 1 λ 0 N 0 j ( ω ω i f ) + exp [ λ 0 N 0 T j ( ω + ω i f ) T ] 1 λ 0 N 0 j ( ω + ω i f ) } .
P S D d c ( ω ) = { λ 0 ( λ 0 N 0 + j ω ) [ exp ( λ 0 T N 0 ) [ cos ( ω T ) j sin ( ω T ) ] 1 ] } 2 ,
P S D i f ( ω ) = | λ 0 a 2 { exp [ λ 0 N 0 T j ( ω ω i f ) T ] 1 λ 0 N 0 j ( ω ω i f ) + exp [ λ 0 N 0 T j ( ω ω i f ) T ] 1 λ 0 N 0 j ( ω + ω i f ) } | 2 .
P S D i f ( f > 0 ) = λ 0     2 a 2 4 { λ 0     2 N 0     2 + [ 2 π ( f f i f ) ] 2 } × { exp ( 2 λ 0 N 0 T ) 2 exp ( λ 0 N 0 T ) × cos [ 2 π ( f f i f ) T ] + 1 } .
S N R i f = η m T h ν P L O P S ( P L O + P S + P d a r k ) = m N L O N S N L O + N S + N d a r k ,
P S D i f ( f = f i f ) = N 0     2 a 2 4 [ exp ( 2 λ 0 T N 0 ) 2 exp ( λ 0 T N 0 ) + 1 ]
= N 0     2 a 2 4 [ 1 exp ( λ 0 T N 0 ) ] 2 .
i N ¯ 2 = 0 T d N d t d t 0 T λ 0 exp ( λ 0 t N 0 ) d t = N 0 [ 1 exp ( λ 0 t N 0 ) ] .
S N R i f = P S D i f ( f i f ) i N       2 ¯ = N 0 a 2 4 1 exp ( λ 0 T N 0 )
= m N 0 N L O N S ( N L O + N S ) 2 [ 1 exp ( N L O + N S N 0 ) ] ,
S N R i f = m N 0 N L O N S ( N L O + N S + N d a r k ) 2 × [ 1 exp ( N L O + N S + N d a r k N 0 ) ] .
d ( S N R ) d N L O = m N S ( N S + N L O + N d a r k ) 3 × { exp ( N S + N L O + N d a r k N 0 ) × [ N L O           2 + ( N 0 + N S + N d a r k ) × N L O N 0 N S N 0 N d a r k ] + ( N 0 N S + N 0 N d a r k - N 0 N LO ) } .

Metrics