Abstract

We report on the realization of what we believe to be a new holographic setup for the fabrication of polymer liquid-crystal polymer-slice diffraction gratings, which utilizes an optical-feedback-driven nanopositioning technique. We have increased the stability of the interference pattern by means of a simple piezomirror used in a feedback configuration to keep constant the phase of the interferometer. The feedback system is driven by a proportional, integral, derivative control software, and the stability degree is controlled by the reference signal coming from a standard test grating. A preliminary experimental characterization indicates that good control and stabilization of parasitic fluctuations of the interference pattern are obtained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, "Holography, 1948-1971," Science 177, 299-313 (1972).
    [CrossRef] [PubMed]
  2. R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
    [CrossRef]
  3. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
    [CrossRef]
  4. T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000).
    [CrossRef]
  5. M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002).
    [CrossRef]
  6. A. Y. G. Fuh and T. S. Mo, "Holographic grating based on dye-doped surface-stabilized ferroelectric liquid-crystal films," Jpn. J. Appl. Phys. Part 1 41, 2122-2127 (2002).
    [CrossRef]
  7. C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).
  8. M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004).
    [CrossRef]
  9. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
    [CrossRef] [PubMed]
  10. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  11. R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003).
    [CrossRef]
  12. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
    [CrossRef]
  13. G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
    [CrossRef] [PubMed]
  14. N. Tsutsumi and A. Fujihara, "Tunable distributed feedback lasing with narrowed emission using holographic dynamic gratings in a polymeric waveguide," Appl. Phys. Lett. 86, 061101 (2005).
    [CrossRef]
  15. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, "Observation of two-wave coupling during the formation of POLICRYPS diffraction grating," Opt. Lett. 30, 1840-1842 (2005).
    [CrossRef] [PubMed]
  16. R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, "Development of a new kind of holographic grating made of liquid-crystal films separated by slices of polymeric material," Opt. Lett. 29, 1261-1263 (2004).
    [CrossRef] [PubMed]
  17. A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, "Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials," Appl. Phys. Lett. 84, 3492-3494 (2004).
    [CrossRef]
  18. Inovar Devices, "Fringe Locker," http://www.inovar-inc.com/index.html.
  19. Excalibur Engineering, "Fringe Locker," http://www.excaliburengineering.com.
  20. Odhner Holographics, "Fringe Locker," http://www.stabilock.com.
  21. Data Optics, "Fringe control system," http://www.dataoptics.com.
  22. J. Frejlich, L. Cescato, and G. F. Mendes, "Analysis of an active stabilization system for a holographic setup," Appl. Opt. 27, 1967-1976 (1988).
    [CrossRef] [PubMed]
  23. R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001).
    [CrossRef]
  24. T. Mattison, R. Greenall, and T. Downs, "Vibration control feedback R&D at University of British Columbia," in Proceedings of Nanobeam 2002, the 26th Advanced ICFA Beam Dynamics Workshop on Nanometre Size Colliding Beams, R. Assmann and F. Zimmermann, eds. (CERN Proceedings 2003-001 IPHE Document 2003-007), pp. 81-86.

2005 (3)

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

N. Tsutsumi and A. Fujihara, "Tunable distributed feedback lasing with narrowed emission using holographic dynamic gratings in a polymeric waveguide," Appl. Phys. Lett. 86, 061101 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, "Observation of two-wave coupling during the formation of POLICRYPS diffraction grating," Opt. Lett. 30, 1840-1842 (2005).
[CrossRef] [PubMed]

2004 (4)

A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, "Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials," Appl. Phys. Lett. 84, 3492-3494 (2004).
[CrossRef]

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, "Development of a new kind of holographic grating made of liquid-crystal films separated by slices of polymeric material," Opt. Lett. 29, 1261-1263 (2004).
[CrossRef] [PubMed]

M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004).
[CrossRef]

2003 (3)

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
[CrossRef] [PubMed]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003).
[CrossRef]

2002 (2)

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002).
[CrossRef]

A. Y. G. Fuh and T. S. Mo, "Holographic grating based on dye-doped surface-stabilized ferroelectric liquid-crystal films," Jpn. J. Appl. Phys. Part 1 41, 2122-2127 (2002).
[CrossRef]

2001 (2)

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001).
[CrossRef]

2000 (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000).
[CrossRef]

1994 (1)

R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

1988 (1)

1972 (1)

D. Gabor, "Holography, 1948-1971," Science 177, 299-313 (1972).
[CrossRef] [PubMed]

Barna, V.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

Bartolino, R.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

Bowley, C. C.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

Brandelik, D. M.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Bunning, T. J.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003).
[CrossRef]

T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Caputo, R.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, "Observation of two-wave coupling during the formation of POLICRYPS diffraction grating," Opt. Lett. 30, 1840-1842 (2005).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, "Development of a new kind of holographic grating made of liquid-crystal films separated by slices of polymeric material," Opt. Lett. 29, 1261-1263 (2004).
[CrossRef] [PubMed]

A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, "Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials," Appl. Phys. Lett. 84, 3492-3494 (2004).
[CrossRef]

Cescato, L.

Chandra, S.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Chen, C. G.

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001).
[CrossRef]

Colegrove, J.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

Crawford, G. P.

M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
[CrossRef] [PubMed]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002).
[CrossRef]

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

Criante, L.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

Danworaphong, S.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

de Luca, A.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

De Sio, L.

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Downs, T.

T. Mattison, R. Greenall, and T. Downs, "Vibration control feedback R&D at University of British Columbia," in Proceedings of Nanobeam 2002, the 26th Advanced ICFA Beam Dynamics Workshop on Nanometre Size Colliding Beams, R. Assmann and F. Zimmermann, eds. (CERN Proceedings 2003-001 IPHE Document 2003-007), pp. 81-86.

Escuti, M. J.

Fiske, T.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

Fontecchio, A. K.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002).
[CrossRef]

Francescangeli, O.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

Frejlich, J.

Fuh, A. Y. G.

A. Y. G. Fuh and T. S. Mo, "Holographic grating based on dye-doped surface-stabilized ferroelectric liquid-crystal films," Jpn. J. Appl. Phys. Part 1 41, 2122-2127 (2002).
[CrossRef]

Fujihara, A.

N. Tsutsumi and A. Fujihara, "Tunable distributed feedback lasing with narrowed emission using holographic dynamic gratings in a polymeric waveguide," Appl. Phys. Lett. 86, 061101 (2005).
[CrossRef]

Gabor, D.

D. Gabor, "Holography, 1948-1971," Science 177, 299-313 (1972).
[CrossRef] [PubMed]

Greenall, R.

T. Mattison, R. Greenall, and T. Downs, "Vibration control feedback R&D at University of British Columbia," in Proceedings of Nanobeam 2002, the 26th Advanced ICFA Beam Dynamics Workshop on Nanometre Size Colliding Beams, R. Assmann and F. Zimmermann, eds. (CERN Proceedings 2003-001 IPHE Document 2003-007), pp. 81-86.

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Heilmann, R. K.

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001).
[CrossRef]

Jakubiak, R.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003).
[CrossRef]

Jazbinsek, M.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002).
[CrossRef]

Kelly, J.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

Kirkpatrick, S. M.

T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000).
[CrossRef]

Konkola, P. T.

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001).
[CrossRef]

Kossyrev, P.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

Lucchetta, D. E.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

Mattison, T.

T. Mattison, R. Greenall, and T. Downs, "Vibration control feedback R&D at University of British Columbia," in Proceedings of Nanobeam 2002, the 26th Advanced ICFA Beam Dynamics Workshop on Nanometre Size Colliding Beams, R. Assmann and F. Zimmermann, eds. (CERN Proceedings 2003-001 IPHE Document 2003-007), pp. 81-86.

Mendes, G. F.

Mo, T. S.

A. Y. G. Fuh and T. S. Mo, "Holographic grating based on dye-doped surface-stabilized ferroelectric liquid-crystal films," Jpn. J. Appl. Phys. Part 1 41, 2122-2127 (2002).
[CrossRef]

Natarajan, L. V.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003).
[CrossRef]

T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Olenik, I. D.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002).
[CrossRef]

Pati, G. S.

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001).
[CrossRef]

Qi, J.

Scaramuzza, N.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

Schattenburg, M. L.

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Shepherd, C. K.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Simoni, F.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

Strangi, G.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

Sukhov, A. V.

Sutherland, R. L.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Tomlin, D.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000).
[CrossRef]

Tondiglia, V. P.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003).
[CrossRef]

T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Tsutsumi, N.

N. Tsutsumi and A. Fujihara, "Tunable distributed feedback lasing with narrowed emission using holographic dynamic gratings in a polymeric waveguide," Appl. Phys. Lett. 86, 061101 (2005).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Umeton, C.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, "Observation of two-wave coupling during the formation of POLICRYPS diffraction grating," Opt. Lett. 30, 1840-1842 (2005).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, "Development of a new kind of holographic grating made of liquid-crystal films separated by slices of polymeric material," Opt. Lett. 29, 1261-1263 (2004).
[CrossRef] [PubMed]

A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, "Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials," Appl. Phys. Lett. 84, 3492-3494 (2004).
[CrossRef]

Vaia, R. A.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003).
[CrossRef]

Veltri, A.

Versace, C.

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

Yuan, H. J.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

Zgonik, M.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002).
[CrossRef]

Adv. Mater. (1)

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

N. Tsutsumi and A. Fujihara, "Tunable distributed feedback lasing with narrowed emission using holographic dynamic gratings in a polymeric waveguide," Appl. Phys. Lett. 86, 061101 (2005).
[CrossRef]

A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, "Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials," Appl. Phys. Lett. 84, 3492-3494 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Chem. Mater. (2)

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (1)

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Y. G. Fuh and T. S. Mo, "Holographic grating based on dye-doped surface-stabilized ferroelectric liquid-crystal films," Jpn. J. Appl. Phys. Part 1 41, 2122-2127 (2002).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002).
[CrossRef]

Nature (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

Science (1)

D. Gabor, "Holography, 1948-1971," Science 177, 299-313 (1972).
[CrossRef] [PubMed]

Other (5)

T. Mattison, R. Greenall, and T. Downs, "Vibration control feedback R&D at University of British Columbia," in Proceedings of Nanobeam 2002, the 26th Advanced ICFA Beam Dynamics Workshop on Nanometre Size Colliding Beams, R. Assmann and F. Zimmermann, eds. (CERN Proceedings 2003-001 IPHE Document 2003-007), pp. 81-86.

Inovar Devices, "Fringe Locker," http://www.inovar-inc.com/index.html.

Excalibur Engineering, "Fringe Locker," http://www.excaliburengineering.com.

Odhner Holographics, "Fringe Locker," http://www.stabilock.com.

Data Optics, "Fringe control system," http://www.dataoptics.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical setup for UV curing of POLICRYPS gratings with stability check. P, polarizer; λ / 2 , half-wave plate; BE, beam expander; BS, beam splitter; 2 θ cur , total curing angle; M, mirrors; HS, hot stage; I, tunable aperture; S, sample; P D 1 , first beam photodetector; P D 2 , second beam photodetector; P D 3 , diffracted–reflected beam photodetector. Inset, reference grating (put immediately below the sample area) that enables the stability check.

Fig. 2
Fig. 2

Preliminary check of the grating stability. Typical phase deviations of the interference pattern with respect to the test grating during the first 1000 s are reported.

Fig. 3
Fig. 3

Reference interference signal V P D is reported as a function of the piezomirror driving voltage V P S .

Fig. 4
Fig. 4

Comparison between the experimental dependence of the interference signal V P D on the piezomirror driving voltage V P S and the fit of the same dependence performed by utilizing Eq. (2).

Fig. 5
Fig. 5

Residual phase shift φ res is reported as a function of the piezomirror driving voltage V P S .

Fig. 6
Fig. 6

Feedback-driven setup for curing POLICRYPS gratings. During the curing process, the control signal from photodiode P D 3 is acquired by a computer and processed by a PID code, which sends a corrected driving voltage back to the piezomirror to stabilize the interferometric part of the setup.

Fig. 7
Fig. 7

Typical time behavior of the spatial displacement of the test grating with respect to the curing pattern in the presence of a thermoacoustic isolating box. With the feedback action on (upper curve), the system is stable (within the limits of the piezosystem accuracy). When the feedback action is off (lower curve), it is possible to recognize the action of the isolating box that prevents the stochastic jitters; this box turns out, however, to be ineffective where long-term fluctuations are concerned.

Fig. 8
Fig. 8

Typical time behavior of the spatial displacement of the test grating with respect to the curing pattern in the presence of a thermoacoustic isolating box. If the feedback action is turned off during the curing process, long-term fluctuations emerge, confirming the importance of the control action of the feedback system.

Fig. 9
Fig. 9

Typical time behavior of the spatial displacement of the test grating with respect to the curing pattern in the absence of a thermoacoustic isolating box. Also in this case the feedback action is a key element in the stability of the system (upper curve). When the feedback action is off (lower curve), we can observe both stochastic jitter and long-term fluctuations of the setup position.

Fig. 10
Fig. 10

Typical time behavior of the spatial displacement of the test grating with respect to the curing pattern in the absence of a thermoacoustic isolating box. It can be observed that turning off the feedback action during the curing process, both jitter and long-term fluctuations emerge, thus confirming the importance of the feedback control action.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V PD I PD 3 = I d 2 + I r 1 + 2 I d 2 I r 1 sin φ exp ,
V P D = A + B sin ( C + D V P S + E V P S 2 + FV PS           3 ) ,
φ res = φ exp - φ th
V P S = P Δ V + I Δ V Δ t + D Δ V Δ t + V const ,

Metrics