Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering of a tightly focused beam by an optically trapped particle

Not Accessible

Your library or personal account may give you access

Abstract

Near-forward scattering of an optically trapped 5-μm-radius polystyrene latex sphere by the trapping beam was examined both theoretically and experimentally. Since the trapping beam is tightly focused, the beam fields superpose and interfere with the scattered fields in the forward hemisphere. The observed light intensity consists of a series of concentric bright and dark fringes centered about the forward-scattering direction. Both the number of fringes and their contrast depend on the position of the trapping beam focal waist with respect to the sphere. The fringes are caused by diffraction that is due to the truncation of the tail of the trapping beam as the beam is transmitted through the sphere.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Trapping two types of particles by using a tightly focused radially polarized power-exponent-phase vortex beam

Chengjin Fan, Yongxin Liu, Xiaoyan Wang, Ziyang Chen, and Jixiong Pu
J. Opt. Soc. Am. A 35(6) 903-907 (2018)

FDTD approach to optical forces of tightly focused vector beams on metal particles

Jian-Qi Qin, Xi-Lin Wang, Ding Jia, Jing Chen, Ya-Xian Fan, Jianping Ding, and Hui-Tian Wang
Opt. Express 17(10) 8407-8416 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved