Abstract

A fiber-optic mirror magneto-optical trap (mirror-MOT) that uses a pair of circularly polarized light-emitting optical fibers as an optical access is demonstrated. The fiber is fabricated so that a length of birefringence fiber, designed to be a quarter wave retarder at both wavelengths of 780 and 852  nm, is attached directly onto a polarization-maintaining normal fiber. The polarization states of light emitted from the fibers are sufficiently circular for the operation of a mirror-MOT with 87Rb atoms. The mirror-MOT is able to capture approximately the same number of atoms obtainable with a conventional mirror-MOT. The technique makes it possible to fabricate a compact MOT apparatus by introducing the optical fibers directly into an ultrahigh-vacuum chamber.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
    [CrossRef]
  2. Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
    [CrossRef]
  3. J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
    [CrossRef]
  4. S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
    [CrossRef]
  5. N. Lundblad, D. C. Aveline, R. J. Thompson, J. M. Kohel, J. Ramirez-Serrano, W. M. Klipstein, D. G. Enzer, N. Yu, and L. Maleki, "Tow-species cold atomic beam," J. Opt. Soc. Am. B 21, 3-6 (2004).
    [CrossRef]
  6. A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs* molecules via photoassociation," Phys. Rev. Lett. 92, 033004/1-4 (2004).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  8. P. Hernday, "Polarization measurements," in Fiber Optic Test and Measurement, D.Derickson, ed. (Prentice-Hall, 1998), pp. 220-245.
  9. T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, "Frequency-locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D2 line," Jpn. J. Appl. Phys. 20, L451-L454 (1981).
    [CrossRef]
  10. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, "Optical molasses and multilevel atoms:experiment," J. Opt. Soc. Am. B 6, 2072-2083 (1989).
    [CrossRef]
  11. K. Lindquist, M. Stephens, and C. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
    [CrossRef] [PubMed]

2005

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

2004

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs* molecules via photoassociation," Phys. Rev. Lett. 92, 033004/1-4 (2004).
[CrossRef]

N. Lundblad, D. C. Aveline, R. J. Thompson, J. M. Kohel, J. Ramirez-Serrano, W. M. Klipstein, D. G. Enzer, N. Yu, and L. Maleki, "Tow-species cold atomic beam," J. Opt. Soc. Am. B 21, 3-6 (2004).
[CrossRef]

2000

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
[CrossRef]

1999

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

1998

P. Hernday, "Polarization measurements," in Fiber Optic Test and Measurement, D.Derickson, ed. (Prentice-Hall, 1998), pp. 220-245.

1995

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

1992

K. Lindquist, M. Stephens, and C. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

1989

1981

T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, "Frequency-locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D2 line," Jpn. J. Appl. Phys. 20, L451-L454 (1981).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Anderson, D. Z.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Aveline, D. C.

Becker, C.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

Bergeman, T.

A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs* molecules via photoassociation," Phys. Rev. Lett. 92, 033004/1-4 (2004).
[CrossRef]

Brajdic, M.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

Bright, V. M.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Calarco, T.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
[CrossRef]

Chu, S.

Cirac, J. I.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
[CrossRef]

Cornell, E. A.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

DeMille, D.

A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs* molecules via photoassociation," Phys. Rev. Lett. 92, 033004/1-4 (2004).
[CrossRef]

Diot, Q.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Enzer, D. G.

Folman, R.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

Hänsch, T. W.

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Hänsel, W.

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Haupt, S.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

Hernday, P.

P. Hernday, "Polarization measurements," in Fiber Optic Test and Measurement, D.Derickson, ed. (Prentice-Hall, 1998), pp. 220-245.

Hinds, E. A.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
[CrossRef]

Hori, H.

T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, "Frequency-locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D2 line," Jpn. J. Appl. Phys. 20, L451-L454 (1981).
[CrossRef]

Ibaragi, A.

T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, "Frequency-locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D2 line," Jpn. J. Appl. Phys. 20, L451-L454 (1981).
[CrossRef]

Jaksch, D.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
[CrossRef]

Kasper, A.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

Kerman, A. J.

A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs* molecules via photoassociation," Phys. Rev. Lett. 92, 033004/1-4 (2004).
[CrossRef]

Kishimoto, T.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Kitano, M.

T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, "Frequency-locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D2 line," Jpn. J. Appl. Phys. 20, L451-L454 (1981).
[CrossRef]

Klipstein, W. M.

Kohel, J. M.

Krüger, P.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

Lindquist, K.

K. Lindquist, M. Stephens, and C. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

Lundblad, N.

Maleki, L.

Ogawa, T.

T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, "Frequency-locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D2 line," Jpn. J. Appl. Phys. 20, L451-L454 (1981).
[CrossRef]

Prentiss, M.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Ramirez-Serrano, J.

Reichel, J.

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Riis, E.

Sage, J. M.

A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs* molecules via photoassociation," Phys. Rev. Lett. 92, 033004/1-4 (2004).
[CrossRef]

Sainis, S.

A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs* molecules via photoassociation," Phys. Rev. Lett. 92, 033004/1-4 (2004).
[CrossRef]

Saravanan, R. A.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Schmiedmayer, J.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
[CrossRef]

Segal, S. R.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Shevy, Y.

Stephens, M.

K. Lindquist, M. Stephens, and C. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

Thompson, R. J.

Ungar, P. J.

Wang, Y.-J.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Weiss, D. S.

Wieman, C.

K. Lindquist, M. Stephens, and C. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

Wildermuth, S.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

Wu, S.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

Yabuzaki, T.

T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, "Frequency-locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D2 line," Jpn. J. Appl. Phys. 20, L451-L454 (1981).
[CrossRef]

Yu, N.

Zoller, P.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, "Frequency-locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D2 line," Jpn. J. Appl. Phys. 20, L451-L454 (1981).
[CrossRef]

Phys. Rev. A

K. Lindquist, M. Stephens, and C. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms:controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304/1-11 (2000).
[CrossRef]

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, "Optimized magneto-optical trap for experiments with ultracold atoms near surfaces," Phys. Rev. A 69, 030901/1-4 (2004).
[CrossRef]

Phys. Rev. Lett.

A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs* molecules via photoassociation," Phys. Rev. Lett. 92, 033004/1-4 (2004).
[CrossRef]

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, "Atom Michelson interferometer on a chip using a Bose-Einstein condensate," Phys. Rev. Lett. 94, 090405/1-4 (2005).
[CrossRef]

J. Reichel, W. Hänsel, and T. W. Hänsch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

P. Hernday, "Polarization measurements," in Fiber Optic Test and Measurement, D.Derickson, ed. (Prentice-Hall, 1998), pp. 220-245.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Normalized Stokes parameters of CPFs measured at (a) 852 and (b) 780 nm:solid and open circles, CPFs 1 and 2, respectively, L, the perfect left-handed circular states.

Fig. 2
Fig. 2

Wavelength dependence of Stokes parameters measured with CPF 1:solid line, linear approximation, L, the perfect left-handed circular state.

Fig. 3
Fig. 3

Far-field intensity profiles of light emitted from CPF:(a) bare CPF; (b) with index-matching gel on the side.

Fig. 4
Fig. 4

Setup for the mirror-MOT using CPFs:L1, L2 achromatic lenses; RM1, RM2, roof mirrors; C1, C2, magnetic coils; LHCP, RHCP, left- and right-handed circularly polarized light, respectively; M, total-reflection mirror installed inside the UHV chamber.

Fig. 5
Fig. 5

Temporal evolution of transmittance T(t) of the probe beam measured immediately after turning off the MOT:dots, experimental data; solid curve, the result of numerical fitting.

Fig. 6
Fig. 6

Dependence of the number of captured atoms N 0 on Stokes parameter S3:solid circles, results obtained in experiment; typical error bars are shown. Open circle, result obtained with CPFs; dashed line, linear approximation.

Equations (63)

Equations on this page are rendered with MathJax. Learn more.

852   nm
852   nm
R 87 b
Φ = L Δ β ,
Δ β
Δ β
ω 0
Δ β ( ω ) = Δ β 0 + Δ β 1 × ( ω ω 0 ) + Δ β 2 × ( ω ω 0 ) 2 + ,
Δ β i [ d i Δ β ( ω ) d ω i ] ω = ω 0 ( i = 0 , 1 , 2 , ) .
Δ β 1
Δ β 2
Δ β 0
ω 0
Δ β 1
ω 0
Δ β 2
Δ β ( ω )
L b
L b
Φ = L [ Δ β 0 + Δ β 1 × ( ω ω 0 ) ] = 2 π ( m + ) ,
ω = 2 π ( n m ) L Δ β 1 + ω 0 ,
ω = ω 0
Δ β 1
2.0 ps / m
852 nm
15   mm
780   nm
750   nm
13.8   mm
780   nm
50 ° C
± 0.1   mm
0.9
850   nm
S 3 = 0.9
12   nm
R 87 b
780   nm
5 2 S 1 / 2 ( F g = 2 ) 5 2 P 3 / 2 ( F e = 3 )
11   MHz
4   mW
1.8   cm
0.4 mW / cm 2
R 87 b
10 G / cm
2 × 10 9   Torr
( 1   Torr = 133.3   Pa )
40   nW
300   μm
ln [ T ( t ) ] = σ 0 N 0 2 π [ r 0     2 + ( k B T 0 / M ) t 2 ] ,
N 0
T 0
σ 0 = 1.36 × 10 13 m 2
k B
R 87 b
r 0
0.45   mm
1.8 × 10 7
R 87 b
350   μK
0.4 mW / cm 2
R 87 b
10 7 R 87 b

Metrics