Abstract

Most algorithms for retrieving chlorophyll-a concentration (Chla) from reflectance spectra assume that bio-optical parameters such as the phytoplankton specific absorption coefficient (a ϕ*) or the chlorophyll-a fluorescence quantum yield (η) are constant. Yet there exist experimental data showing large ranges of variability for these quantities. The main objective of this study was to analyze the sensitivity of two Chla algorithms to variations in bio-optical parameters and to uncertainties in reflectance measurements. These algorithms are specifically designed for turbid productive waters and are based on red and near-infrared reflectances. By means of simulated data, it is shown that the spectral regions where the algorithms are maximally sensitive to Chla overlap those of maximal sensitivity to variations in the above bio-optical parameters. Thus, to increase the accuracy of Chla retrieval, we suggest using spectral regions where the algorithms are less sensitive to Chla, but also less sensitive to these interferences. aϕ* appeared to be one of the most important sources of error for retrieving Chla. However, when the phytoplankton backscattering coefficient (bb,ϕ) dominates the total backscattering, as is likely during algal blooms, variations in the specific bb,ϕ may introduce large systematic uncertainties in Chla estimation. Also, uncertainties in reflectance measurements, which are due to incomplete atmospheric correction or reflected skylight removal, seem to affect considerably the accuracy of Chla estimation. Instead, variations in other bio-optical parameters, such as η or the specific backscattering coefficient of total suspended particles, appear to have minor importance. Suggestions regarding the optimal band locations to be used in the above algorithms are finally provided.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Dall'Olmo and A. A. Gitelson, "Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005). See also erratum in 44, 3342 (2005).
    [CrossRef]
  2. A. Gitelson, G. Keydan, and V. Shishkin, "Inland water quality assessment from satellite data in visible range of the spectrum," Sov. Remote Sens. 6, 28-36 (1985).
  3. A. Gitelson, K. Kondrat'ev, and G. Garbusov, "New approach to monitoring aquatic ecosystem quality," Trans. USSR Acad. Sci. 295, 825-827 (1987).
  4. A. A. Gitelson and K. Y. Kondratyev, "Optical models of mesotrophic and eutrophic water bodies," Int. J. Remote Sens. 12, 373-385 (1991).
  5. A. G. Dekker, "Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing," Ph.D. thesis (Vrije Universiteit, 1993).
  6. S. Thiemann and H. Kaufmann, "Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany," Remote Sens. Environ. 81, 228-237 (2002).
    [CrossRef]
  7. H. J. Hoogenboom, A. G. Dekker, and I. A. Althuis, "Simulation of aviris sensitivity for detecting chlorophyll over coastal and inland waters," Remote Sens. Environ. 65, 333-340 (1998).
    [CrossRef]
  8. D. Pierson and N. Strömbäck, "A modelling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish great lakes," Geophysica 36, 177-202 (2000).
  9. K. Oki and Y. Yasuoka, "Estimation of chlorophyll concentration in lakes and inland seas with a field spectroradiometer above the water surface," Appl. Opt. 41, 6463-6469 (2002).
  10. E. F. Hoge and C. W. S. N. R. Wright, "Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination," Appl. Opt. 26, 2082-2094 (1987).
  11. K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
    [CrossRef]
  12. J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
    [CrossRef]
  13. K. Kallio, S. Koponen, and J. Pulliainen, "Feasibility of airborne imaging spectrometry for lake monitoring—a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes," Int. J. Remote Sens. 24, 3771-3790 (2003).
    [CrossRef]
  14. P. Ammenberg, P. Flink, T. Lindell, D. Pierson, and N. Strombeck, "Bio-optical modelling combined with remote sensing to assess water quality," Int. J. Remote Sens. 23, 1621-1638 (2002).
    [CrossRef]
  15. G. W. Kattawar and J. C. Vastano, "Exact 1-D solution to the problem of chlorophyll fluorescence from the ocean," Appl. Opt. 21, 2489-2492 (1982).
  16. D. A. Kiefer and R. A. Reynolds, "Advances in understanding phytoplankton fluorescence and photosynthesis," in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowsky and A. D. Woodhead, eds. (Plenum, 1992), pp. 155-174.
  17. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).
  18. A. Albert and C. D. Mobley, "An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters," Opt. Exp. 11, 2873-2890 (2003).
  19. A. Morel and A. Bricaud, "Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton," Deep-Sea Res. 28A, 1375-1393 (1981).
    [CrossRef]
  20. A. Vasilkov and O. Kopelevich, "Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer," Oceanology 22, 697-701 (1982).
  21. H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
    [CrossRef]
  22. Y. J. Park and K. Ruddick, "Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters," Appl. Opt. 44, 1236-1249 (2005).
    [CrossRef]
  23. C. D. Mobley, "Estimation of the remote-sensing reflectance from above-surface measurements," Appl. Opt. 38, 7442-7455 (1999).
  24. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39, 897-912 (2000).
  25. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  27. A. Bricaud and A. Morel, "Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling," Appl. Opt. 25, 571-580 (1986).
  28. R. P. Bukata, J. H. Jerome, J. E. Bruton, and S. C. Jain, "Determination of inherent optical properties of Lake Ontario coastal waters," Appl. Opt. 18, 3926-3932 (1979).
  29. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy," J. Plankton Res. 26, 191-212 (2004).
    [CrossRef]
  30. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. Oceans 109, (2004).
  31. A. Briraud, A. Morel, and L. Prieur, "Optical efficiency factors of some phytoplankters," Limnol. Oceanogr. 28, 816-832 (1983).
  32. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, "The optical properties of pure water," in Ocean Optics XII, SPIE 2258, (1994).
  33. A. Morel, "Optical properties of pure water and pure seawater," in Optical Aspects of Oceanography, Jerlov and E. Steeman Nielsen, eds. (Academic, 1974).
  34. T. J. Petzold, "Volume scattering functions for selected ocean waters," in Light in the Sea, J.E.Tyler, Dowden, Hutchinson, Ross, and Stroudsberg, eds. (Scripps Institute of Oceanography, 1977).
  35. P. Gege, "The water color simulator Wasi: An integrating software tool for analysis and simulation of optical in situ spectra," Comput. Geosci. 30, 523-532 (2004).
    [CrossRef]
  36. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

2005 (2)

2004 (3)

P. Gege, "The water color simulator Wasi: An integrating software tool for analysis and simulation of optical in situ spectra," Comput. Geosci. 30, 523-532 (2004).
[CrossRef]

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy," J. Plankton Res. 26, 191-212 (2004).
[CrossRef]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. Oceans 109, (2004).

2003 (3)

K. Kallio, S. Koponen, and J. Pulliainen, "Feasibility of airborne imaging spectrometry for lake monitoring—a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes," Int. J. Remote Sens. 24, 3771-3790 (2003).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

A. Albert and C. D. Mobley, "An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters," Opt. Exp. 11, 2873-2890 (2003).

2002 (3)

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, and N. Strombeck, "Bio-optical modelling combined with remote sensing to assess water quality," Int. J. Remote Sens. 23, 1621-1638 (2002).
[CrossRef]

S. Thiemann and H. Kaufmann, "Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany," Remote Sens. Environ. 81, 228-237 (2002).
[CrossRef]

K. Oki and Y. Yasuoka, "Estimation of chlorophyll concentration in lakes and inland seas with a field spectroradiometer above the water surface," Appl. Opt. 41, 6463-6469 (2002).

2001 (3)

H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
[CrossRef]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

2000 (2)

D. Pierson and N. Strömbäck, "A modelling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish great lakes," Geophysica 36, 177-202 (2000).

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39, 897-912 (2000).

1999 (1)

1998 (1)

H. J. Hoogenboom, A. G. Dekker, and I. A. Althuis, "Simulation of aviris sensitivity for detecting chlorophyll over coastal and inland waters," Remote Sens. Environ. 65, 333-340 (1998).
[CrossRef]

1994 (2)

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, "The optical properties of pure water," in Ocean Optics XII, SPIE 2258, (1994).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

1993 (1)

A. G. Dekker, "Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing," Ph.D. thesis (Vrije Universiteit, 1993).

1992 (1)

D. A. Kiefer and R. A. Reynolds, "Advances in understanding phytoplankton fluorescence and photosynthesis," in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowsky and A. D. Woodhead, eds. (Plenum, 1992), pp. 155-174.

1991 (1)

A. A. Gitelson and K. Y. Kondratyev, "Optical models of mesotrophic and eutrophic water bodies," Int. J. Remote Sens. 12, 373-385 (1991).

1987 (2)

A. Gitelson, K. Kondrat'ev, and G. Garbusov, "New approach to monitoring aquatic ecosystem quality," Trans. USSR Acad. Sci. 295, 825-827 (1987).

E. F. Hoge and C. W. S. N. R. Wright, "Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination," Appl. Opt. 26, 2082-2094 (1987).

1986 (1)

1985 (1)

A. Gitelson, G. Keydan, and V. Shishkin, "Inland water quality assessment from satellite data in visible range of the spectrum," Sov. Remote Sens. 6, 28-36 (1985).

1983 (2)

A. Briraud, A. Morel, and L. Prieur, "Optical efficiency factors of some phytoplankters," Limnol. Oceanogr. 28, 816-832 (1983).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

1982 (2)

G. W. Kattawar and J. C. Vastano, "Exact 1-D solution to the problem of chlorophyll fluorescence from the ocean," Appl. Opt. 21, 2489-2492 (1982).

A. Vasilkov and O. Kopelevich, "Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer," Oceanology 22, 697-701 (1982).

1981 (1)

A. Morel and A. Bricaud, "Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton," Deep-Sea Res. 28A, 1375-1393 (1981).
[CrossRef]

1979 (1)

1977 (1)

T. J. Petzold, "Volume scattering functions for selected ocean waters," in Light in the Sea, J.E.Tyler, Dowden, Hutchinson, Ross, and Stroudsberg, eds. (Scripps Institute of Oceanography, 1977).

1974 (1)

A. Morel, "Optical properties of pure water and pure seawater," in Optical Aspects of Oceanography, Jerlov and E. Steeman Nielsen, eds. (Academic, 1974).

Albert, A.

A. Albert and C. D. Mobley, "An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters," Opt. Exp. 11, 2873-2890 (2003).

Althuis, I. A.

H. J. Hoogenboom, A. G. Dekker, and I. A. Althuis, "Simulation of aviris sensitivity for detecting chlorophyll over coastal and inland waters," Remote Sens. Environ. 65, 333-340 (1998).
[CrossRef]

Ammenberg, P.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, and N. Strombeck, "Bio-optical modelling combined with remote sensing to assess water quality," Int. J. Remote Sens. 23, 1621-1638 (2002).
[CrossRef]

Babin, M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

Balch, W. M.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy," J. Plankton Res. 26, 191-212 (2004).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bricaud, A.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. Oceans 109, (2004).

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

A. Bricaud and A. Morel, "Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling," Appl. Opt. 25, 571-580 (1986).

A. Morel and A. Bricaud, "Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton," Deep-Sea Res. 28A, 1375-1393 (1981).
[CrossRef]

Briraud, A.

A. Briraud, A. Morel, and L. Prieur, "Optical efficiency factors of some phytoplankters," Limnol. Oceanogr. 28, 816-832 (1983).

Brown, C. W.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy," J. Plankton Res. 26, 191-212 (2004).
[CrossRef]

Bruton, J. E.

Buiteveld, H.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, "The optical properties of pure water," in Ocean Optics XII, SPIE 2258, (1994).

Bukata, R. P.

Claustre, H.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. Oceans 109, (2004).

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

Dall'Olmo, G.

Dekker, A. G.

H. J. Hoogenboom, A. G. Dekker, and I. A. Althuis, "Simulation of aviris sensitivity for detecting chlorophyll over coastal and inland waters," Remote Sens. Environ. 65, 333-340 (1998).
[CrossRef]

A. G. Dekker, "Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing," Ph.D. thesis (Vrije Universiteit, 1993).

Donze, M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, "The optical properties of pure water," in Ocean Optics XII, SPIE 2258, (1994).

Eloheimo, K.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

Flink, P.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, and N. Strombeck, "Bio-optical modelling combined with remote sensing to assess water quality," Int. J. Remote Sens. 23, 1621-1638 (2002).
[CrossRef]

Garbusov, G.

A. Gitelson, K. Kondrat'ev, and G. Garbusov, "New approach to monitoring aquatic ecosystem quality," Trans. USSR Acad. Sci. 295, 825-827 (1987).

Gege, P.

P. Gege, "The water color simulator Wasi: An integrating software tool for analysis and simulation of optical in situ spectra," Comput. Geosci. 30, 523-532 (2004).
[CrossRef]

Gitelson, A.

A. Gitelson, K. Kondrat'ev, and G. Garbusov, "New approach to monitoring aquatic ecosystem quality," Trans. USSR Acad. Sci. 295, 825-827 (1987).

A. Gitelson, G. Keydan, and V. Shishkin, "Inland water quality assessment from satellite data in visible range of the spectrum," Sov. Remote Sens. 6, 28-36 (1985).

Gitelson, A. A.

Guillard, R. R. L.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy," J. Plankton Res. 26, 191-212 (2004).
[CrossRef]

Hakvoort, J. H. M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, "The optical properties of pure water," in Ocean Optics XII, SPIE 2258, (1994).

Hallikainen, M.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

Hannonen, T.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

Hoge, E. F.

Hoogenboom, H. J.

H. J. Hoogenboom, A. G. Dekker, and I. A. Althuis, "Simulation of aviris sensitivity for detecting chlorophyll over coastal and inland waters," Remote Sens. Environ. 65, 333-340 (1998).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jain, S. C.

Jerome, J. H.

Kallio, K.

K. Kallio, S. Koponen, and J. Pulliainen, "Feasibility of airborne imaging spectrometry for lake monitoring—a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes," Int. J. Remote Sens. 24, 3771-3790 (2003).
[CrossRef]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

Kattawar, G. W.

Kaufmann, H.

S. Thiemann and H. Kaufmann, "Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany," Remote Sens. Environ. 81, 228-237 (2002).
[CrossRef]

Keydan, G.

A. Gitelson, G. Keydan, and V. Shishkin, "Inland water quality assessment from satellite data in visible range of the spectrum," Sov. Remote Sens. 6, 28-36 (1985).

Kiefer, D. A.

D. A. Kiefer and R. A. Reynolds, "Advances in understanding phytoplankton fluorescence and photosynthesis," in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowsky and A. D. Woodhead, eds. (Plenum, 1992), pp. 155-174.

Kondrat'ev, K.

A. Gitelson, K. Kondrat'ev, and G. Garbusov, "New approach to monitoring aquatic ecosystem quality," Trans. USSR Acad. Sci. 295, 825-827 (1987).

Kondratyev, K. Y.

A. A. Gitelson and K. Y. Kondratyev, "Optical models of mesotrophic and eutrophic water bodies," Int. J. Remote Sens. 12, 373-385 (1991).

Kopelevich, O.

A. Vasilkov and O. Kopelevich, "Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer," Oceanology 22, 697-701 (1982).

Koponen, S.

K. Kallio, S. Koponen, and J. Pulliainen, "Feasibility of airborne imaging spectrometry for lake monitoring—a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes," Int. J. Remote Sens. 24, 3771-3790 (2003).
[CrossRef]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

Kutser, T.

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

Lindell, T.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, and N. Strombeck, "Bio-optical modelling combined with remote sensing to assess water quality," Int. J. Remote Sens. 23, 1621-1638 (2002).
[CrossRef]

Loisel, H.

H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
[CrossRef]

Mobley, C. D.

A. Albert and C. D. Mobley, "An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters," Opt. Exp. 11, 2873-2890 (2003).

C. D. Mobley, "Estimation of the remote-sensing reflectance from above-surface measurements," Appl. Opt. 38, 7442-7455 (1999).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Morel, A.

H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
[CrossRef]

A. Bricaud and A. Morel, "Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling," Appl. Opt. 25, 571-580 (1986).

A. Briraud, A. Morel, and L. Prieur, "Optical efficiency factors of some phytoplankters," Limnol. Oceanogr. 28, 816-832 (1983).

A. Morel and A. Bricaud, "Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton," Deep-Sea Res. 28A, 1375-1393 (1981).
[CrossRef]

A. Morel, "Optical properties of pure water and pure seawater," in Optical Aspects of Oceanography, Jerlov and E. Steeman Nielsen, eds. (Academic, 1974).

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

Oki, K.

Oubelkheir, K.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. Oceans 109, (2004).

Ovidio, F.

Park, Y. J.

Petzold, T. J.

T. J. Petzold, "Volume scattering functions for selected ocean waters," in Light in the Sea, J.E.Tyler, Dowden, Hutchinson, Ross, and Stroudsberg, eds. (Scripps Institute of Oceanography, 1977).

Pierson, D.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, and N. Strombeck, "Bio-optical modelling combined with remote sensing to assess water quality," Int. J. Remote Sens. 23, 1621-1638 (2002).
[CrossRef]

D. Pierson and N. Strömbäck, "A modelling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish great lakes," Geophysica 36, 177-202 (2000).

Prieur, L.

A. Briraud, A. Morel, and L. Prieur, "Optical efficiency factors of some phytoplankters," Limnol. Oceanogr. 28, 816-832 (1983).

Pulliainen, J.

K. Kallio, S. Koponen, and J. Pulliainen, "Feasibility of airborne imaging spectrometry for lake monitoring—a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes," Int. J. Remote Sens. 24, 3771-3790 (2003).
[CrossRef]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

Pyh, T.

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

Ras, J.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. Oceans 109, (2004).

Reynolds, R. A.

D. A. Kiefer and R. A. Reynolds, "Advances in understanding phytoplankton fluorescence and photosynthesis," in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowsky and A. D. Woodhead, eds. (Plenum, 1992), pp. 155-174.

Rijkeboer, M.

Ruddick, K.

Ruddick, K. G.

Servomaa, H.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

Shishkin, V.

A. Gitelson, G. Keydan, and V. Shishkin, "Inland water quality assessment from satellite data in visible range of the spectrum," Sov. Remote Sens. 6, 28-36 (1985).

Stramski, D.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

Strömbäck, N.

D. Pierson and N. Strömbäck, "A modelling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish great lakes," Geophysica 36, 177-202 (2000).

Strombeck, N.

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, and N. Strombeck, "Bio-optical modelling combined with remote sensing to assess water quality," Int. J. Remote Sens. 23, 1621-1638 (2002).
[CrossRef]

Tauriainen, S.

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

Thiemann, S.

S. Thiemann and H. Kaufmann, "Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany," Remote Sens. Environ. 81, 228-237 (2002).
[CrossRef]

Vaillancourt, R. D.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy," J. Plankton Res. 26, 191-212 (2004).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Vasilkov, A.

A. Vasilkov and O. Kopelevich, "Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer," Oceanology 22, 697-701 (1982).

Vastano, J. C.

Veps, J.

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

Wright, C. W. S. N. R.

Yasuoka, Y.

Appl. Opt. (9)

R. P. Bukata, J. H. Jerome, J. E. Bruton, and S. C. Jain, "Determination of inherent optical properties of Lake Ontario coastal waters," Appl. Opt. 18, 3926-3932 (1979).

G. W. Kattawar and J. C. Vastano, "Exact 1-D solution to the problem of chlorophyll fluorescence from the ocean," Appl. Opt. 21, 2489-2492 (1982).

E. F. Hoge and C. W. S. N. R. Wright, "Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination," Appl. Opt. 26, 2082-2094 (1987).

C. D. Mobley, "Estimation of the remote-sensing reflectance from above-surface measurements," Appl. Opt. 38, 7442-7455 (1999).

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39, 897-912 (2000).

A. Bricaud and A. Morel, "Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling," Appl. Opt. 25, 571-580 (1986).

K. Oki and Y. Yasuoka, "Estimation of chlorophyll concentration in lakes and inland seas with a field spectroradiometer above the water surface," Appl. Opt. 41, 6463-6469 (2002).

G. Dall'Olmo and A. A. Gitelson, "Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results," Appl. Opt. 44, 412-422 (2005). See also erratum in 44, 3342 (2005).
[CrossRef]

Y. J. Park and K. Ruddick, "Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters," Appl. Opt. 44, 1236-1249 (2005).
[CrossRef]

Comput. Geosci. (1)

P. Gege, "The water color simulator Wasi: An integrating software tool for analysis and simulation of optical in situ spectra," Comput. Geosci. 30, 523-532 (2004).
[CrossRef]

Deep-Sea Res. (1)

A. Morel and A. Bricaud, "Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton," Deep-Sea Res. 28A, 1375-1393 (1981).
[CrossRef]

Geophysica (1)

D. Pierson and N. Strömbäck, "A modelling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish great lakes," Geophysica 36, 177-202 (2000).

Int. J. Remote Sens. (4)

A. A. Gitelson and K. Y. Kondratyev, "Optical models of mesotrophic and eutrophic water bodies," Int. J. Remote Sens. 12, 373-385 (1991).

H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
[CrossRef]

K. Kallio, S. Koponen, and J. Pulliainen, "Feasibility of airborne imaging spectrometry for lake monitoring—a case study of spatial chlorophyll alpha distribution in two meso-eutrophic lakes," Int. J. Remote Sens. 24, 3771-3790 (2003).
[CrossRef]

P. Ammenberg, P. Flink, T. Lindell, D. Pierson, and N. Strombeck, "Bio-optical modelling combined with remote sensing to assess water quality," Int. J. Remote Sens. 23, 1621-1638 (2002).
[CrossRef]

J. Geophys. Res. Oceans (2)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. Oceans 108, 3211 (2003).

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. Oceans 109, (2004).

J. Plankton Res. (1)

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy," J. Plankton Res. 26, 191-212 (2004).
[CrossRef]

Limnol. Oceanogr. (1)

A. Briraud, A. Morel, and L. Prieur, "Optical efficiency factors of some phytoplankters," Limnol. Oceanogr. 28, 816-832 (1983).

Oceanology (1)

A. Vasilkov and O. Kopelevich, "Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer," Oceanology 22, 697-701 (1982).

Opt. Exp. (1)

A. Albert and C. D. Mobley, "An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters," Opt. Exp. 11, 2873-2890 (2003).

Remote Sens. Environ. (2)

S. Thiemann and H. Kaufmann, "Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany," Remote Sens. Environ. 81, 228-237 (2002).
[CrossRef]

H. J. Hoogenboom, A. G. Dekker, and I. A. Althuis, "Simulation of aviris sensitivity for detecting chlorophyll over coastal and inland waters," Remote Sens. Environ. 65, 333-340 (1998).
[CrossRef]

Sci. Total Environ. (2)

K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Veps, and T. Pyh, "Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons," Sci. Total Environ. 268, 59-77 (2001).
[CrossRef]

J. Pulliainen, K. Kallio, K. Eloheimo, S. Koponen, H. Servomaa, T. Hannonen, S. Tauriainen, and M. Hallikainen, "A semi-operative approach to lake water quality retrieval from remote sensing data," Sci. Total Environ. 268, 79-93 (2001).
[CrossRef]

Sov. Remote Sens. (1)

A. Gitelson, G. Keydan, and V. Shishkin, "Inland water quality assessment from satellite data in visible range of the spectrum," Sov. Remote Sens. 6, 28-36 (1985).

Trans. USSR Acad. Sci. (1)

A. Gitelson, K. Kondrat'ev, and G. Garbusov, "New approach to monitoring aquatic ecosystem quality," Trans. USSR Acad. Sci. 295, 825-827 (1987).

Other (8)

A. G. Dekker, "Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing," Ph.D. thesis (Vrije Universiteit, 1993).

D. A. Kiefer and R. A. Reynolds, "Advances in understanding phytoplankton fluorescence and photosynthesis," in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowsky and A. D. Woodhead, eds. (Plenum, 1992), pp. 155-174.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, "The optical properties of pure water," in Ocean Optics XII, SPIE 2258, (1994).

A. Morel, "Optical properties of pure water and pure seawater," in Optical Aspects of Oceanography, Jerlov and E. Steeman Nielsen, eds. (Academic, 1974).

T. J. Petzold, "Volume scattering functions for selected ocean waters," in Light in the Sea, J.E.Tyler, Dowden, Hutchinson, Ross, and Stroudsberg, eds. (Scripps Institute of Oceanography, 1977).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental standard error of Chla prediction as a function of λ1 and λ3 (recalculated from data of Ref. 1 after setting λ2 = 700 nm):(a) three-band algorithm, (b) band-ratio algorithm.

Fig. 2
Fig. 2

Simulated Rrs for the nominal values of the parameters and Chla = 36 mg m−3. R rs S is the remote-sensing reflectance simulated with η = 0; R rs 0 is the remote-sensing reflectance simulated with η = 0.002; R rs F  is the difference between R rs 0 and R rs S . The location of the maximum of R rs 0 in the NIR is indicated by λpeak.

Fig. 3
Fig. 3

Algorithm sensitivities with respect to Chla as a function of λ1 and λ3:(a) three-band algorithm, (b) band-ratio algorithm, (c) sensitivity of the three-band algorithm with respect to Chla as a function of λ2 and λ3. For these calculations Chla = 36 mg m−3.

Fig. 4
Fig. 4

λ1 and λ3 positions of the algorithm sensitivity maxima as functions of Chla. λpeak is the position of the NIR reflectance maximum.

Fig. 5
Fig. 5

R rs spectra and ΔChla computed for the variations in bio-optical parameters described in Table 1 and for Chla = 10 mg m−3. First column: nominal reflectance spectrum (solid curve) and reflectance spectrum computed after the indicated bio-optical parameter was augmented (dashed curve). Second column: ΔChla calculated for the three-band algorithm (Y). Third column: ΔChla calculated for the band-ratio algorithm (Z).

Fig. 6
Fig. 6

As Fig. 5, but for Chla = 36 mg m−3.

Fig. 7
Fig. 7

As Fig. 6, but for Chla = 100 mg m−3.

Fig. 8
Fig. 8

R rs spectra and ΔChla computed for the variations in P described in Table 1 for three Chla levels: top row, Chla = 10 mg m−3; middle row, Chla = 36 mg m−3; bottom row, Chla = 100 mg m−3. First column, R rs spectra; second column: three-band algorithm (Y); third column: band-ratio algorithm (Z).

Fig. 9
Fig. 9

R rs spectra and ΔChla computed for the variations in ε described in Table 1 for three Chla levels: top row, Chla = 10 mg m−3; middle row, = 36 mg m−3; bottom row, Chla = 100 mg m−3. First column, Chla R rs spectra; second column, three-band algorithm (Y); third column, band-ratio algorithm (Z).

Fig. 10
Fig. 10

Phytoplankton specific absorption and backscattering coefficients simulated by use of Mie theory for a Gaussian number size distribution with a standard deviation of 0.5 μm and two central diameters: 3.36 μm (filled circles) and 6.00 μm (open squares). To demonstrate the spectral variability, the relative change in each specific inherent optical property is presented in the inset.

Fig. 11
Fig. 11

Comparison between experimental STE and simulated ΔChla: (a) experimental STE, (b) ΔChla computed taking into account the contribution of backscattering by nonalgal particles; (c) ΔChla computed neglecting the contribution of backscattering by nonalgal particles. Chla was set at 36 mg m−3.

Fig. 12
Fig. 12

ΔChla due to changes in the phytoplankton specific inherent optical properties computed neglecting (top column) and taking into account (second column) the contribution of nonalgal particles to the total backscattering coefficient. Top row, only changes in bb,ϕ * are considered; bottom row, only changes in a ϕ* are considered.

Fig. 13
Fig. 13

Simulated (dashed curve) phytoplankton specific absorption coefficient compared with the measured one (solid curve).

Tables (1)

Tables Icon

Table 1 Nominal and Corresponding Augmented Values of the Parameters Used to Compute Figs. 5–7 a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

a ϕ ( λ 1 ) = m Y ( λ 1 , λ 2 , λ 3 ) Y ( λ 1 , λ 2 , λ 3 ) + q Y ( λ 1 , λ 2 , λ 3 ) ,
a ϕ ( λ 1 ) = m Z ( λ 1 , λ 3 ) Z ( λ 1 , λ 3 ) + q Z ( λ 1 , λ 3 ) ,
S M , C h l a = | M ( C h l a + δ C h l a ) M ( C h l a ) δ C h l a | .
C h l a = n = 0 3 τ n ( λ 1 , λ 2 , λ 3 ) [ Y ( λ 1 , λ 2 , λ 3 ) ] n ,
C h l a = n = 0 3 κ n ( λ 1 , λ 3 ) [ Z ( λ 1 , λ 3 ) ] n .
Δ C h l a ( M p ) = | C h l a ( M 0 ) C h l a ( M p ) C h l a ( M 0 ) | ,
a = a ϕ + a nap + a CDOM + a w ,
a ϕ * = 3 2 a sol * Q a ( ρ ) ρ ,
Q a ( ρ ) = 1 + 2 e ρ ρ + 2 e ρ 1 ρ 2 ,
ρ = 4 α n = a sol * c i d ,
a nap ( λ ) = a nap ( 443 ) exp [ S nap ( λ 443 ) ] ,
a CDOM ( λ ) = a CDOM ( 440 ) exp [ S CDOM ( λ 440 ) ] .
b b ( λ ) = b b , P ( λ ) + b b , w ( λ ) ,
b b , P ( λ ) = b b , P * ( 550 ) ( λ 550 ) y P ,
b b , w ( λ ) = 0.0011 ( λ 550 ) 4.32 .
b ( λ ) = b b , P ( λ ) / 0.02 + b b , w ( λ ) / 0.5 .

Metrics