Abstract

Numerous applications in integrated optics, especially those related to multiwavelength telecommunications, require dichroic reflectors for use as narrowband or broadband wavelength-selective filters. Bragg mirrors are excellent candidates for this purpose, and we describe a method of fabricating Bragg grating reflectors in Ti-indiffused Lithium Niobate single-mode waveguides based on holographic masking in association with proton exchange. The holographic setup is employed to record a photolithographic mask directly on the substrate, enabling the inscription of waveguides with both periodic and aperiodic distributed parameters.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and M. Nakamura, "Periodic structure for integrated optics," IEEE J. Quantum Electron. 13, 233-251 (1977).
    [CrossRef]
  2. C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, "Integrated optical Ti:Er:LinbO3 distibuted Bragg reflector laser with fixed photorefractive grating," Opt. Lett. 23, 1194-1196 (1998).
    [CrossRef]
  3. B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
    [CrossRef]
  4. J. Söchtig, "Ti:LiNbO3 stripe waveguide Bragg reflector gratings," Electron. Lett. 24, 844-845 (1988).
    [CrossRef]
  5. B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
    [CrossRef]
  6. Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 17, 312-314 (2001).
    [CrossRef]
  7. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, "Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses," Opt. Express 12, 4019-4021 (2004).
    [CrossRef] [PubMed]
  8. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fiber by a tranverse holographic method," Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  9. T. Taunay, P. Bernage, M. Douay, W. Xie, G. Martinelli, P. Niay, J. Bayon, E. Delavaque, and H. Poignant, "Ultraviolet-enhanced photosensitivity in cerium-doped aluminisilicate fibers and glasses through high-pressure hydrogen loading," J. Opt. Soc. Am. B 14, 912-924 (1997).
    [CrossRef]
  10. K. O. Hill, Y. Fujii, D. C. Jonhson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
    [CrossRef]
  11. H. Patrick and S. L. Gilbert, "Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber," Opt. Lett. 18, 1484-1486 (1993).
    [CrossRef] [PubMed]
  12. P. Hariharan, "Sagnac or Michelson-Sagnac interferometer?," Appl. Opt. 14, 2319-2321 (1975).
    [CrossRef]
  13. P. Hariharan and D. Sen, "Triangular path interferometer," J. Opt. Soc. Am. 49, 1105-1106 (1959).
    [CrossRef]
  14. G. Cochran, "New method of making Fresnel transforms with incoherent light," J. Opt. Soc. Am. 56, 1513-1517 (1966).
    [CrossRef]
  15. D. N. Grimes, "Optical correlator with special application to MTF measurement," Appl. Opt. 11, 914-918 (1972).
    [CrossRef] [PubMed]
  16. R. Ferriere and B. E. Benkelfat, "Novel holographic setup to realize on-chip photolithographic mask for Bragg grating inscription," Opt. Commun. 206, 275-280 (2002).
    [CrossRef]
  17. J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 47, 607-608 (1982).
    [CrossRef]
  18. M. De Micheli, J. Botineau, S. Neveu, D. B. Ostrowsky, and M. Papuchon, "Independent control of index and profiles in proton-exchanged lithium niobate waveguides," Opt. Lett. 8, 114-115 (1983).
    [CrossRef] [PubMed]
  19. P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, "Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation," Opt. Lett. 13, 1050-1052 (1988).
    [CrossRef] [PubMed]
  20. A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, and G. Stewart, "Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in z-cut LiNbO3," Opt. Commun. 61, 100-104 (1987).
    [CrossRef]
  21. G. E. Betts, F. J. O'Donnell, and K. G. Ray, "Effect of annealing of photorefractive damage in titanium-indiffused LiNbO3 modulators," Photon. Technol. Lett. 6, 211-213 (1994).
    [CrossRef]

2004

2003

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

2002

R. Ferriere and B. E. Benkelfat, "Novel holographic setup to realize on-chip photolithographic mask for Bragg grating inscription," Opt. Commun. 206, 275-280 (2002).
[CrossRef]

2001

Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 17, 312-314 (2001).
[CrossRef]

1999

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

1998

1997

1994

G. E. Betts, F. J. O'Donnell, and K. G. Ray, "Effect of annealing of photorefractive damage in titanium-indiffused LiNbO3 modulators," Photon. Technol. Lett. 6, 211-213 (1994).
[CrossRef]

1993

1989

1988

1987

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, and G. Stewart, "Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in z-cut LiNbO3," Opt. Commun. 61, 100-104 (1987).
[CrossRef]

1983

1982

J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 47, 607-608 (1982).
[CrossRef]

1978

K. O. Hill, Y. Fujii, D. C. Jonhson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

1977

A. Yariv and M. Nakamura, "Periodic structure for integrated optics," IEEE J. Quantum Electron. 13, 233-251 (1977).
[CrossRef]

1975

1972

1966

1959

Al-Shukri, S. M.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, and G. Stewart, "Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in z-cut LiNbO3," Opt. Commun. 61, 100-104 (1987).
[CrossRef]

Bayon, J.

Becker, C.

Benkelfat, B. E.

R. Ferriere and B. E. Benkelfat, "Novel holographic setup to realize on-chip photolithographic mask for Bragg grating inscription," Opt. Commun. 206, 275-280 (2002).
[CrossRef]

Bernage, P.

Betts, G. E.

G. E. Betts, F. J. O'Donnell, and K. G. Ray, "Effect of annealing of photorefractive damage in titanium-indiffused LiNbO3 modulators," Photon. Technol. Lett. 6, 211-213 (1994).
[CrossRef]

Botineau, J.

Cheng, A.

Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 17, 312-314 (2001).
[CrossRef]

Chu, P. L.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

Cochran, G.

Das, B. K.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

Dawar, A. L.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, and G. Stewart, "Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in z-cut LiNbO3," Opt. Commun. 61, 100-104 (1987).
[CrossRef]

De La Rue, R. M.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, and G. Stewart, "Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in z-cut LiNbO3," Opt. Commun. 61, 100-104 (1987).
[CrossRef]

De Micheli, M.

Delavaque, E.

Douay, M.

Ferriere, R.

R. Ferriere and B. E. Benkelfat, "Novel holographic setup to realize on-chip photolithographic mask for Bragg grating inscription," Opt. Commun. 206, 275-280 (2002).
[CrossRef]

Findakly, T. K.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Jonhson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Gilbert, S. L.

Glenn, W. H.

Greiner, A.

Grimes, D. N.

Hariharan, P.

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Jonhson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Hirao, K.

Hu, H.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 47, 607-608 (1982).
[CrossRef]

Jonhson, D. C.

K. O. Hill, Y. Fujii, D. C. Jonhson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Jonhson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Kuroiwa, Y.

Leonberger, F. J.

Martinelli, G.

Meltz, G.

Morey, W. W.

Nakamura, M.

A. Yariv and M. Nakamura, "Periodic structure for integrated optics," IEEE J. Quantum Electron. 13, 233-251 (1977).
[CrossRef]

Narita, Y.

Neveu, S.

Niay, P.

Nutt, A. C. G.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, and G. Stewart, "Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in z-cut LiNbO3," Opt. Commun. 61, 100-104 (1987).
[CrossRef]

O'Donnell, F. J.

G. E. Betts, F. J. O'Donnell, and K. G. Ray, "Effect of annealing of photorefractive damage in titanium-indiffused LiNbO3 modulators," Photon. Technol. Lett. 6, 211-213 (1994).
[CrossRef]

Oesselke, T.

Ostrowsky, D. B.

Pape, A.

Papuchon, M.

Patrick, H.

Poignant, H.

Ray, K. G.

G. E. Betts, F. J. O'Donnell, and K. G. Ray, "Effect of annealing of photorefractive damage in titanium-indiffused LiNbO3 modulators," Photon. Technol. Lett. 6, 211-213 (1994).
[CrossRef]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 47, 607-608 (1982).
[CrossRef]

Ricken, R.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

Sen, D.

Sidorin, Y.

Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 17, 312-314 (2001).
[CrossRef]

Söchtig, J.

J. Söchtig, "Ti:LiNbO3 stripe waveguide Bragg reflector gratings," Electron. Lett. 24, 844-845 (1988).
[CrossRef]

Sohler, W.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, "Integrated optical Ti:Er:LinbO3 distibuted Bragg reflector laser with fixed photorefractive grating," Opt. Lett. 23, 1194-1196 (1998).
[CrossRef]

Stewart, G.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, and G. Stewart, "Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in z-cut LiNbO3," Opt. Commun. 61, 100-104 (1987).
[CrossRef]

Suche, H.

Suchoski, P. G.

Takeshima, N.

Tanaka, S.

Taunay, T.

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 47, 607-608 (1982).
[CrossRef]

Wu, B.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

Xie, W.

Xiong, Z.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

Yariv, A.

A. Yariv and M. Nakamura, "Periodic structure for integrated optics," IEEE J. Quantum Electron. 13, 233-251 (1977).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 47, 607-608 (1982).
[CrossRef]

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Jonhson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Electron. Lett.

Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 17, 312-314 (2001).
[CrossRef]

J. Söchtig, "Ti:LiNbO3 stripe waveguide Bragg reflector gratings," Electron. Lett. 24, 844-845 (1988).
[CrossRef]

IEEE J. Quantum Electron.

B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999).
[CrossRef]

A. Yariv and M. Nakamura, "Periodic structure for integrated optics," IEEE J. Quantum Electron. 13, 233-251 (1977).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Commun.

R. Ferriere and B. E. Benkelfat, "Novel holographic setup to realize on-chip photolithographic mask for Bragg grating inscription," Opt. Commun. 206, 275-280 (2002).
[CrossRef]

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, and G. Stewart, "Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in z-cut LiNbO3," Opt. Commun. 61, 100-104 (1987).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

G. E. Betts, F. J. O'Donnell, and K. G. Ray, "Effect of annealing of photorefractive damage in titanium-indiffused LiNbO3 modulators," Photon. Technol. Lett. 6, 211-213 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Light beam is launched in a waveguide (n 1) indiffused in a substrate (n 3). Periodic index variations modulated the effective index of the guide with an amplitude Δn and a period Λ.

Fig. 2
Fig. 2

Spectral response of a Bragg mirror inscribed in a Ti:LiNbO3 waveguide. Periodic variations of index: Δn = 3 × 10−3, Bragg order is 5, ΛBragg = 1.737 μm, grating length is approximately 5.2 mm (=3000 ΛBragg).

Fig. 3
Fig. 3

Reflectivity of a Bragg mirror versus the number of grating periods (Δn = 5 × 10−3, Bragg order is 5).

Fig. 4
Fig. 4

Reflectivity versus the periodic phase modulation of waveguide by index variations.

Fig. 5
Fig. 5

Reflectivity versus the duty cycle error on grating periods.

Fig. 6
Fig. 6

Holographic setup is based on a triangular interferometer configuration The key symbols used here and in subsequent figures are MO, microscope objective; S, point source; Lc, collimating lens; L1, focusing lens; BS, beam splitter; M1, M2, mirrors; L2, output lens; P2, image plane; P3, recording plane.

Fig. 7
Fig. 7

Linear displacement Δ of the mirror M2 induces the formation of twin sources symetrically with respect to the ξ axis.

Fig. 8
Fig. 8

Schematic drawing of light propagation. For simplicity, only an on-axis beam is represented.

Fig. 9
Fig. 9

Image of a object transparency (contouring mask) disposed on the P1 plane is displayed at setup output in the P 3 plane. The optical function associated with the object transparency is multiplied by a periodic function due to the interference phenomenon.

Fig. 10
Fig. 10

Photograph of a Fabry–Perot mask disposed on a Ti-indiffused waveguide. The mask is realized by the composite technique described in Fig. 8: The cavity is obtained by the imaging of a tranparency disposed on the P1 plane and gratings that surrounded the cavity.

Fig. 11
Fig. 11

Modification of the basic holographic setup by insertion of a phase plate to obtain a chirped grating.

Fig. 12
Fig. 12

Phase plate displaces the location of image S1 from plane P2 to plane P2′. The fringes observed on plane P 3 come from interference between a plane wave Σ2 and a spherical wave Σ1.

Fig. 13
Fig. 13

In a first approximation, values of fringe spacing versus interference order can be considered as varying linearly.

Fig. 14
Fig. 14

Experimental process employed to realize periodic variations of index into the Ti:LiNbO3 waveguide.

Fig. 15
Fig. 15

MEB photograph of a SiO2 mask on a surface of a LiNbO3 substrate (mask period is 1.76 μm).

Fig. 16
Fig. 16

Spectral response of a 4 mm periodic distributed parameter Ti:LiNbO3 waveguide. Peak reflection is observed at 1.546 μm with an amplitude value of 94%. The sample was proton exchanged through a SiO2 periodic mask for 3 h at 230 °C and annealed at 400 °C for 1 h and 10 min.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

[ 2 + ω 2 μ ε ( x , y ) ] E m ( x , y ) = E ( x , y ) β m 2 ,
ε ( x , y ) = ε 0 ( x , y ) + Δ ε ( x , y ) .
β f β b = k 2 π Λ ,
Λ Bragg = k λ 2 n eff ,
O 1 d 1 = O 2 d 2 = 2 Δ sin ( π / 8 ) ;
δ 2 = O 1 d 1 cos ( π / 8 ) = O 2 d 2 cos ( π / 8 ) = 2 Δ sin ( π / 8 ) cos ( π / 8 ) ,
δ 2 = Δ cos ( π / 4 ) = Δ 2 / 2 .
α = arctan ( δ 2 f ) .
i ( Δ ) = λ 2 sin ( α ) = λ 2 sin arctan ( Δ 2 2 f ) .
Δ ( i ) = 2 f 2 tan [ arcsin ( λ 2 i ) ] .
P 2 P 2 = e ( 1 1 n ) .
γ = x 1 f = x 2 z .
Σ 1 ( x 0 ) = A exp [ j 2 π λ ( x 0     2 + 2 x 2 x 0 2 z ) ] ,
Σ 2 ( x 0 ) = A exp [ j 2 π λ ( x 1 x 0 f ) ] .
I ( x 0 ) = [ Σ 1 ( x 0 ) + Σ 2 ( x 0 ) ] [ Σ 1 ( x 0 ) + Σ 2 ( x 0 ) ] * ,
I ( x 0 ) = 2 A [ 1 + cos 2 π λ ] ( x 1 x 0 f + x 0     2 + 2 x 2 x 0 2 z ) ;
p ( m ) = 4 y 2 z 2 + 2 m λ z 4 γ 2 z 2 + 2 ( m 1 ) λ z .

Metrics