Abstract

A magnetic liquid mirror based on ferrofluids was demonstrated. Magnetic liquid mirrors represent a major departure from solid mirror technology. They present both advantages and disadvantages with respect to established technologies. Stroke (from a fraction of a wave to several hundreds of micrometers), cost (a few dollars per actuator), and scalability (hundreds of thousands of actuators) are the main advantages. Very large mirrors having diameters of the order of a meter should be feasible. There are a few disadvantages. The most important disadvantage is the time response, which is of the order of a few milliseconds. Although this time response could be further decreased with additional technical developments, it is unlikely to match the speed of solid mirrors. The technology is still in its infancy, and considerable work must still be done. However, the advantages are such that the technology is worth pursuing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Girard and E. F. Borra, "Optical tests of a 2.5-m diameter liquid mirror. II. Behavior under external perturbations and scattered light measurements," Appl. Opt. 36, 25, 6278-6288 (1997).
    [CrossRef]
  2. N. M. Ninane and C. A. Jamar, "Parabolic liquid mirrors in optical shop testing," Appl. Opt. 35, 6131-6139 (1996).
    [CrossRef] [PubMed]
  3. P. Hickson and M. K. Mulrooney, "University of British Columbia-NASA multi-narrowband survey. I. Description and photometric properties of Survey," Astrophys. J. Suppl. 115, 35-42 (1997).
    [CrossRef]
  4. R. Cabanac and E. F. Borra, "A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope," Astrophys. J. 509, 309-323 (1998).
    [CrossRef]
  5. R. Sica, S. Sargoytchev, E. F. Borra, L. Girard, S. Argall, C. T. Sarrow, and S. Flatt, "Lidar measurements taken with a large aperture liquid mirror. 1. The Rayleigh-scatter system," Appl. Opt. 34, 6925-6936 (1995).
    [CrossRef] [PubMed]
  6. R. Wuerker, "Bistatic LMT lidar alignment," Opt. Eng. 36, 1421-1424 (1997).
    [CrossRef]
  7. R. J. Sica and T. Russell, "Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I," J. Atmo. Sci. 56, 1308-1329 (1999).
    [CrossRef]
  8. L. A. Whitehead and W. L. H. Shutter, "A wide sky coverage ferrofluid mercury telescope," Astrophys. J. Lett. 418, L139-L141 (1994).
  9. R. Ragazzoni and E. Marchetti, "A liquid adaptive mirror," Astron. Astrophys. 283, L17-L19 (1994).
  10. R. E. Rosensweig, Ferrohydrodynamics (Dover, 1997).
  11. T. B. Jones, "Theory and application of ferrofluid seals," in Introduction to Thermomechanics of Magnetic Fluids, B.Berkovsky, ed. (Hemisphere, 1988), pp. 255-298.
  12. M. D. Cowley and R. E. Rosensweig, "The interfacial stability of a ferromagnetic fluid," J. Fluid Mech. 30, 671-688 (1967).
    [CrossRef]
  13. D. Yogev and S. Efrima, "Novel silver metal liquid like films," J. Phys. Chem. 92, 5754-5760 (1988).
    [CrossRef]
  14. K. C. Gordon, J. J. McGarvey, and K.P. Taylor, "Enhanced Raman scattering from metal liquid like films formed from silver sols," J. Phys. Chem. 93, 6814-6817 (1989).
    [CrossRef]
  15. E. F. Borra, A. M. Ritcey, and E. Artigau, "Floating mirrors," Astrophys. J. Lett. 516, L115-L118 (1999).
    [CrossRef]
  16. J. Gingras, J.-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A. M. Ritcey, "Characterization of reflective silver nanoparticle surface films," Colloids Surf. A (to be published).
  17. E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
    [CrossRef]
  18. O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, "Deformable magnetic mirror for adaptive optics: technological aspects," Sensors Actuators A 89, 1-9 (2001).
    [CrossRef]
  19. R. H. Freeman and J. E. Pearson, "Deformable mirrors for all seasons and reasons," Appl. Opt. 21, 580-588 (1982).
    [CrossRef] [PubMed]

2004 (1)

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

2001 (1)

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, "Deformable magnetic mirror for adaptive optics: technological aspects," Sensors Actuators A 89, 1-9 (2001).
[CrossRef]

1999 (2)

R. J. Sica and T. Russell, "Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I," J. Atmo. Sci. 56, 1308-1329 (1999).
[CrossRef]

E. F. Borra, A. M. Ritcey, and E. Artigau, "Floating mirrors," Astrophys. J. Lett. 516, L115-L118 (1999).
[CrossRef]

1998 (1)

R. Cabanac and E. F. Borra, "A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope," Astrophys. J. 509, 309-323 (1998).
[CrossRef]

1997 (4)

L. Girard and E. F. Borra, "Optical tests of a 2.5-m diameter liquid mirror. II. Behavior under external perturbations and scattered light measurements," Appl. Opt. 36, 25, 6278-6288 (1997).
[CrossRef]

P. Hickson and M. K. Mulrooney, "University of British Columbia-NASA multi-narrowband survey. I. Description and photometric properties of Survey," Astrophys. J. Suppl. 115, 35-42 (1997).
[CrossRef]

R. Wuerker, "Bistatic LMT lidar alignment," Opt. Eng. 36, 1421-1424 (1997).
[CrossRef]

R. E. Rosensweig, Ferrohydrodynamics (Dover, 1997).

1996 (1)

1995 (1)

1994 (2)

L. A. Whitehead and W. L. H. Shutter, "A wide sky coverage ferrofluid mercury telescope," Astrophys. J. Lett. 418, L139-L141 (1994).

R. Ragazzoni and E. Marchetti, "A liquid adaptive mirror," Astron. Astrophys. 283, L17-L19 (1994).

1989 (1)

K. C. Gordon, J. J. McGarvey, and K.P. Taylor, "Enhanced Raman scattering from metal liquid like films formed from silver sols," J. Phys. Chem. 93, 6814-6817 (1989).
[CrossRef]

1988 (2)

D. Yogev and S. Efrima, "Novel silver metal liquid like films," J. Phys. Chem. 92, 5754-5760 (1988).
[CrossRef]

T. B. Jones, "Theory and application of ferrofluid seals," in Introduction to Thermomechanics of Magnetic Fluids, B.Berkovsky, ed. (Hemisphere, 1988), pp. 255-298.

1982 (1)

1967 (1)

M. D. Cowley and R. E. Rosensweig, "The interfacial stability of a ferromagnetic fluid," J. Fluid Mech. 30, 671-688 (1967).
[CrossRef]

Argall, S.

Artigau, E.

E. F. Borra, A. M. Ritcey, and E. Artigau, "Floating mirrors," Astrophys. J. Lett. 516, L115-L118 (1999).
[CrossRef]

Basrour, S.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, "Deformable magnetic mirror for adaptive optics: technological aspects," Sensors Actuators A 89, 1-9 (2001).
[CrossRef]

Bergamasco, R.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

Borra, E. F.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

E. F. Borra, A. M. Ritcey, and E. Artigau, "Floating mirrors," Astrophys. J. Lett. 516, L115-L118 (1999).
[CrossRef]

R. Cabanac and E. F. Borra, "A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope," Astrophys. J. 509, 309-323 (1998).
[CrossRef]

L. Girard and E. F. Borra, "Optical tests of a 2.5-m diameter liquid mirror. II. Behavior under external perturbations and scattered light measurements," Appl. Opt. 36, 25, 6278-6288 (1997).
[CrossRef]

R. Sica, S. Sargoytchev, E. F. Borra, L. Girard, S. Argall, C. T. Sarrow, and S. Flatt, "Lidar measurements taken with a large aperture liquid mirror. 1. The Rayleigh-scatter system," Appl. Opt. 34, 6925-6936 (1995).
[CrossRef] [PubMed]

J. Gingras, J.-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A. M. Ritcey, "Characterization of reflective silver nanoparticle surface films," Colloids Surf. A (to be published).

Cabanac, R.

R. Cabanac and E. F. Borra, "A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope," Astrophys. J. 509, 309-323 (1998).
[CrossRef]

Cowley, M. D.

M. D. Cowley and R. E. Rosensweig, "The interfacial stability of a ferromagnetic fluid," J. Fluid Mech. 30, 671-688 (1967).
[CrossRef]

Cugat, O.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, "Deformable magnetic mirror for adaptive optics: technological aspects," Sensors Actuators A 89, 1-9 (2001).
[CrossRef]

Da Silva, L.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

Dallaire, M.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

Déry, J.-P.

J. Gingras, J.-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A. M. Ritcey, "Characterization of reflective silver nanoparticle surface films," Colloids Surf. A (to be published).

Divoux, C.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, "Deformable magnetic mirror for adaptive optics: technological aspects," Sensors Actuators A 89, 1-9 (2001).
[CrossRef]

Efrima, S.

D. Yogev and S. Efrima, "Novel silver metal liquid like films," J. Phys. Chem. 92, 5754-5760 (1988).
[CrossRef]

Flatt, S.

Freeman, R. H.

Gingras, J.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

J. Gingras, J.-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A. M. Ritcey, "Characterization of reflective silver nanoparticle surface films," Colloids Surf. A (to be published).

Girard, L.

L. Girard and E. F. Borra, "Optical tests of a 2.5-m diameter liquid mirror. II. Behavior under external perturbations and scattered light measurements," Appl. Opt. 36, 25, 6278-6288 (1997).
[CrossRef]

R. Sica, S. Sargoytchev, E. F. Borra, L. Girard, S. Argall, C. T. Sarrow, and S. Flatt, "Lidar measurements taken with a large aperture liquid mirror. 1. The Rayleigh-scatter system," Appl. Opt. 34, 6925-6936 (1995).
[CrossRef] [PubMed]

Gordon, K. C.

K. C. Gordon, J. J. McGarvey, and K.P. Taylor, "Enhanced Raman scattering from metal liquid like films formed from silver sols," J. Phys. Chem. 93, 6814-6817 (1989).
[CrossRef]

Hickson, P.

P. Hickson and M. K. Mulrooney, "University of British Columbia-NASA multi-narrowband survey. I. Description and photometric properties of Survey," Astrophys. J. Suppl. 115, 35-42 (1997).
[CrossRef]

Jamar, C. A.

Jones, T. B.

T. B. Jones, "Theory and application of ferrofluid seals," in Introduction to Thermomechanics of Magnetic Fluids, B.Berkovsky, ed. (Hemisphere, 1988), pp. 255-298.

Laird, P.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

Marchetti, E.

R. Ragazzoni and E. Marchetti, "A liquid adaptive mirror," Astron. Astrophys. 283, L17-L19 (1994).

McGarvey, J. J.

K. C. Gordon, J. J. McGarvey, and K.P. Taylor, "Enhanced Raman scattering from metal liquid like films formed from silver sols," J. Phys. Chem. 93, 6814-6817 (1989).
[CrossRef]

Mounaix, P.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, "Deformable magnetic mirror for adaptive optics: technological aspects," Sensors Actuators A 89, 1-9 (2001).
[CrossRef]

Mulrooney, M. K.

P. Hickson and M. K. Mulrooney, "University of British Columbia-NASA multi-narrowband survey. I. Description and photometric properties of Survey," Astrophys. J. Suppl. 115, 35-42 (1997).
[CrossRef]

Ninane, N. M.

Pearson, J. E.

Ragazzoni, R.

R. Ragazzoni and E. Marchetti, "A liquid adaptive mirror," Astron. Astrophys. 283, L17-L19 (1994).

Reyne, G.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, "Deformable magnetic mirror for adaptive optics: technological aspects," Sensors Actuators A 89, 1-9 (2001).
[CrossRef]

Ritcey, A. M.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

E. F. Borra, A. M. Ritcey, and E. Artigau, "Floating mirrors," Astrophys. J. Lett. 516, L115-L118 (1999).
[CrossRef]

J. Gingras, J.-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A. M. Ritcey, "Characterization of reflective silver nanoparticle surface films," Colloids Surf. A (to be published).

Rosensweig, R. E.

R. E. Rosensweig, Ferrohydrodynamics (Dover, 1997).

M. D. Cowley and R. E. Rosensweig, "The interfacial stability of a ferromagnetic fluid," J. Fluid Mech. 30, 671-688 (1967).
[CrossRef]

Russell, T.

R. J. Sica and T. Russell, "Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I," J. Atmo. Sci. 56, 1308-1329 (1999).
[CrossRef]

Sargoytchev, S.

Sarrow, C. T.

Shutter, W. L. H.

L. A. Whitehead and W. L. H. Shutter, "A wide sky coverage ferrofluid mercury telescope," Astrophys. J. Lett. 418, L139-L141 (1994).

Sica, R.

Sica, R. J.

R. J. Sica and T. Russell, "Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I," J. Atmo. Sci. 56, 1308-1329 (1999).
[CrossRef]

Taylor, K. P.

K. C. Gordon, J. J. McGarvey, and K.P. Taylor, "Enhanced Raman scattering from metal liquid like films formed from silver sols," J. Phys. Chem. 93, 6814-6817 (1989).
[CrossRef]

Whitehead, L. A.

L. A. Whitehead and W. L. H. Shutter, "A wide sky coverage ferrofluid mercury telescope," Astrophys. J. Lett. 418, L139-L141 (1994).

Wuerker, R.

R. Wuerker, "Bistatic LMT lidar alignment," Opt. Eng. 36, 1421-1424 (1997).
[CrossRef]

Yockell-Lelievre, H.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

Yockell-Lelièvre, H.

J. Gingras, J.-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A. M. Ritcey, "Characterization of reflective silver nanoparticle surface films," Colloids Surf. A (to be published).

Yogev, D.

D. Yogev and S. Efrima, "Novel silver metal liquid like films," J. Phys. Chem. 92, 5754-5760 (1988).
[CrossRef]

Appl. Opt. (4)

Astron. Astrophys. (2)

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, and H. Yockell-Lelievre, "Nanoengineered astronomical optics," Astron. Astrophys. 419, 777-782 (2004).
[CrossRef]

R. Ragazzoni and E. Marchetti, "A liquid adaptive mirror," Astron. Astrophys. 283, L17-L19 (1994).

Astrophys. J. (1)

R. Cabanac and E. F. Borra, "A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope," Astrophys. J. 509, 309-323 (1998).
[CrossRef]

Astrophys. J. Lett. (2)

L. A. Whitehead and W. L. H. Shutter, "A wide sky coverage ferrofluid mercury telescope," Astrophys. J. Lett. 418, L139-L141 (1994).

E. F. Borra, A. M. Ritcey, and E. Artigau, "Floating mirrors," Astrophys. J. Lett. 516, L115-L118 (1999).
[CrossRef]

Astrophys. J. Suppl. (1)

P. Hickson and M. K. Mulrooney, "University of British Columbia-NASA multi-narrowband survey. I. Description and photometric properties of Survey," Astrophys. J. Suppl. 115, 35-42 (1997).
[CrossRef]

J. Atmo. Sci. (1)

R. J. Sica and T. Russell, "Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I," J. Atmo. Sci. 56, 1308-1329 (1999).
[CrossRef]

J. Fluid Mech. (1)

M. D. Cowley and R. E. Rosensweig, "The interfacial stability of a ferromagnetic fluid," J. Fluid Mech. 30, 671-688 (1967).
[CrossRef]

J. Phys. Chem. (2)

D. Yogev and S. Efrima, "Novel silver metal liquid like films," J. Phys. Chem. 92, 5754-5760 (1988).
[CrossRef]

K. C. Gordon, J. J. McGarvey, and K.P. Taylor, "Enhanced Raman scattering from metal liquid like films formed from silver sols," J. Phys. Chem. 93, 6814-6817 (1989).
[CrossRef]

Opt. Eng. (1)

R. Wuerker, "Bistatic LMT lidar alignment," Opt. Eng. 36, 1421-1424 (1997).
[CrossRef]

Sensors Actuators A (1)

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, "Deformable magnetic mirror for adaptive optics: technological aspects," Sensors Actuators A 89, 1-9 (2001).
[CrossRef]

Other (3)

R. E. Rosensweig, Ferrohydrodynamics (Dover, 1997).

T. B. Jones, "Theory and application of ferrofluid seals," in Introduction to Thermomechanics of Magnetic Fluids, B.Berkovsky, ed. (Hemisphere, 1988), pp. 255-298.

J. Gingras, J.-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A. M. Ritcey, "Characterization of reflective silver nanoparticle surface films," Colloids Surf. A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a ferrofluidic mirror.

Fig. 2
Fig. 2

Response function of a single actuator as a function of time. The Gaussian shape of the influence function does not vary with amplitude. The influence functions are separated by 2.8 milliseconds.

Fig. 3
Fig. 3

At the top, surface generated by addition of the surface deformations measured independently for three single actuators. At the bottom, the surface generated by the sum of the magnetic fields simultaneously generated by the three coils. The same currents were applied in the two cases. The gray scale indicates the amplitude in micrometers. We can see substantial differences between the two wavefronts.

Fig. 4
Fig. 4

Wavefront shows a waffle mode generated by a ferrofluidic mirror having 49 actuators.

Fig. 5
Fig. 5

As a consequence of vector addition, coupling between actuators varies with the distance between the coil and the free surface of the ferrofluids. See text for more details.

Fig. 6
Fig. 6

Effect on the surface of the ferrofluid of increasing the distance in a 4 × 4 coil array. Distance increases from (a) to (d). The gray scale gives the amplitudes in micrometers. We can see that amplitude decreases with distance and that the surface becomes significantly smoother.

Fig. 7
Fig. 7

Experimental measurements of the peak deflection of an actuator as a function of decreasing and increasing coil current. We see that the two curves nearly coincide and that hysteresis is negligible.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ h = B 2 ( μ r 1 ) 2 μ 0 ρ g ,

Metrics