Abstract

The optical characteristics of a liquid-crystal (LC) panel with microdots on an electrode are investigated. Although 3 μm is larger than 1 molecule of LC material, microdots with a 3  μm diameter are sufficiently small to produce a smooth index profile. We use an electrode patterned in a new way to modulate the index profile of the LC panel, which allows us to modulate the optical phase of the passing light.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Schiekel and K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields," Appl. Phys. Lett. 19, 391-393 (1971).
    [CrossRef]
  2. G. D. Love, "Wavefront correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
    [CrossRef] [PubMed]
  3. D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, and A. V. Kudryashov, "Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics," Appl. Opt. 37, 5579-5589 (1998).
    [CrossRef]
  4. R. A. Kashnow and J. E. Bigelow, "Diffraction from a liquid crystal phase grating," Appl. Opt. 12, 2302-2304 (1973).
    [CrossRef] [PubMed]
  5. S. Sato, "Liquid-crystal lens cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
    [CrossRef]
  6. H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
    [CrossRef]
  7. S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, "The applications of a liquid crystal panel for 15 Gbyte optical disk systems," Jpn. J. Appl. Phys. 38, 1744-1749 (1999).
    [CrossRef]
  8. F. C. Frank, "Liquid crystals; on the theory of liquid crystals," Discuss. Faraday Soc. 25, 19-28 (1958).
    [CrossRef]
  9. K. Okano and Y. Kawamura, "Science and technology of liquid crystals in the 20th century, retrospect and prospect of them," Oyo Butsuri 69, 949-955 (2000).
  10. S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
    [CrossRef]

2003 (1)

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

2002 (1)

S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
[CrossRef]

2000 (1)

K. Okano and Y. Kawamura, "Science and technology of liquid crystals in the 20th century, retrospect and prospect of them," Oyo Butsuri 69, 949-955 (2000).

1999 (1)

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, "The applications of a liquid crystal panel for 15 Gbyte optical disk systems," Jpn. J. Appl. Phys. 38, 1744-1749 (1999).
[CrossRef]

1998 (1)

1997 (1)

1979 (1)

S. Sato, "Liquid-crystal lens cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

1973 (1)

1971 (1)

M. F. Schiekel and K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields," Appl. Phys. Lett. 19, 391-393 (1971).
[CrossRef]

1958 (1)

F. C. Frank, "Liquid crystals; on the theory of liquid crystals," Discuss. Faraday Soc. 25, 19-28 (1958).
[CrossRef]

Bigelow, J. E.

Browne, S. L.

Dayton, D. C.

Fahrenschon, K.

M. F. Schiekel and K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields," Appl. Phys. Lett. 19, 391-393 (1971).
[CrossRef]

Frank, F. C.

F. C. Frank, "Liquid crystals; on the theory of liquid crystals," Discuss. Faraday Soc. 25, 19-28 (1958).
[CrossRef]

Gonglewski, J. D.

Han, K. Y.

S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
[CrossRef]

Hashimoto, G.

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

Ichimura, I.

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

Iwasaki, M.

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, "The applications of a liquid crystal panel for 15 Gbyte optical disk systems," Jpn. J. Appl. Phys. 38, 1744-1749 (1999).
[CrossRef]

Kashnow, R. A.

Kawamura, Y.

K. Okano and Y. Kawamura, "Science and technology of liquid crystals in the 20th century, retrospect and prospect of them," Oyo Butsuri 69, 949-955 (2000).

Kim, J. C.

S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
[CrossRef]

Kudryashov, A. V.

Kurokawa, K.

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

Lee, G. D.

S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
[CrossRef]

Lee, S. H.

S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
[CrossRef]

Love, G. D.

Murao, N.

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, "The applications of a liquid crystal panel for 15 Gbyte optical disk systems," Jpn. J. Appl. Phys. 38, 1744-1749 (1999).
[CrossRef]

Nakao, T.

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

Ogasawara, M.

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, "The applications of a liquid crystal panel for 15 Gbyte optical disk systems," Jpn. J. Appl. Phys. 38, 1744-1749 (1999).
[CrossRef]

Ohtaki, S.

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, "The applications of a liquid crystal panel for 15 Gbyte optical disk systems," Jpn. J. Appl. Phys. 38, 1744-1749 (1999).
[CrossRef]

Okano, K.

K. Okano and Y. Kawamura, "Science and technology of liquid crystals in the 20th century, retrospect and prospect of them," Oyo Butsuri 69, 949-955 (2000).

Osato, K.

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

Park, W. S.

S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
[CrossRef]

Sandven, S. P.

Sato, S.

S. Sato, "Liquid-crystal lens cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

Schiekel, M. F.

M. F. Schiekel and K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields," Appl. Phys. Lett. 19, 391-393 (1971).
[CrossRef]

Tanaka, T.

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

Tanase, H.

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

Yamamoto, K.

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

Yoon, T. H.

S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. F. Schiekel and K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields," Appl. Phys. Lett. 19, 391-393 (1971).
[CrossRef]

Discuss. Faraday Soc. (1)

F. C. Frank, "Liquid crystals; on the theory of liquid crystals," Discuss. Faraday Soc. 25, 19-28 (1958).
[CrossRef]

Jpn. J. Appl. Phys. (4)

S. H. Lee, W. S. Park, G. D. Lee, K. Y. Han, T. H. Yoon, and J. C. Kim, "Low-cell-gap measurement by rotating a wave retarder," Jpn. J. Appl. Phys. 41, 379-383 (2002).
[CrossRef]

S. Sato, "Liquid-crystal lens cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

H. Tanase, G. Hashimoto, K. Yamamoto, T. Tanaka, T. Nakao, K. Kurokawa, I. Ichimura, and K. Osato, "Dual-layer-compatible optical head: integration with a liquid-crystal panel," Jpn. J. Appl. Phys. 42, 891-894 (2003).
[CrossRef]

S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, "The applications of a liquid crystal panel for 15 Gbyte optical disk systems," Jpn. J. Appl. Phys. 38, 1744-1749 (1999).
[CrossRef]

Oyo Butsuri (1)

K. Okano and Y. Kawamura, "Science and technology of liquid crystals in the 20th century, retrospect and prospect of them," Oyo Butsuri 69, 949-955 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Structure of a typical phase-modulating device. Phase modulation is performed by applying a different voltage to different electrodes; thus the phase profile is not continuous (not full).

Fig. 2
Fig. 2

Concept of phase profile modulation by microdots on the electrode: (a) schematic diagram of the phase-profile modulation device; (b) microdot-density-modulated patterned electrode.

Fig. 3
Fig. 3

Concept of the orientation averaging of LC material: (a) orientation of LC molecules not averaged with dots that are too large; (b) orientation of LC molecules averaged with dots that are small enough.

Fig. 4
Fig. 4

Structure of the LC panel.

Fig. 5
Fig. 5

SEM photograph of the microdots on the electrode.

Fig. 6
Fig. 6

Diffraction characteristics of the LC panel with microdots.

Fig. 7
Fig. 7

Retardation characteristics of the LC panel with microdots.

Fig. 8
Fig. 8

Wavefront error when light is passing through the LC panel with microdots.

Fig. 9
Fig. 9

Microdot density profile on the LC panel.

Fig. 10
Fig. 10

Phase-modulation profiles with microdot density modulation.

Fig. 11
Fig. 11

Phase difference in light passing between microdot densities of 3% and 76%.

Fig. 12
Fig. 12

Schematic diagram of anisotropic microdots on the electrode and relations between the directions of the anisotropic microdots and rubbing directions: (a) the long axis of the microdots parallel to the rubbing direction; (b) the long axis of the microdots normal to the rubbing direction.

Fig. 13
Fig. 13

Diffraction characteristics of the LC panel with anisotropic microdots.

Metrics