Abstract

We present a novel electric-field and voltage sensor based on the electro-optical properties of polymer-dispersed liquid-crystals (PDLCs). In principle, the transmittance of PDLCs is a nonlinear function of the applied electrical field. To measure an AC field we superposed to it a known DC field. This allowed us to achieve linearization of the PDLC response and to measure transmittance changes independently of the light-intensity level variations. Validation experiments are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li and T. Yoshino, "Simultaneous measurement of current and voltage by use of one bismuth germanate crystal," Appl. Opt. 41, 5391-5397 (2002).
    [CrossRef] [PubMed]
  2. C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
    [CrossRef]
  3. Y. Li, C. Li, and T. Yoshino, "Optical electric-power-sensing system using Faraday and Pockels cells," Appl. Opt. 40, 5738-5741 (2001).
    [CrossRef]
  4. Z. Wang, Y. Liao, S. Lai, H. Zhao, and X. Chen, "A novel method for simultaneous measurement of current and voltage using one low-birefringence fiber," Opt. Laser Technol. 30, 257-262 (1998).
    [CrossRef]
  5. V. P. Dick and V. A. Loiko, "Model for coherent transmittance calculation for polymer dispersed liquid crystal films," Liq. Crys. 28, 1193-1198 (2001).
    [CrossRef]
  6. J. Lanzo, F. P. Nicoletta, G. De Filpo, and G. Chidichimo, " From nematic emulsions to polymer dispersed liquid crystals," J. Appl. Phys. 92, 4271-4275 (2002).
    [CrossRef]
  7. B.-G. Wu, J. L. West, and J. W. Doane, "Angular discrimination of light transmission through polymer-dispersed liquid-crystals films," J. Appl. Phys. 62, 3926-3931 (1987).
  8. K. Amundson, A. van Blaaderen, and P. Wiltzius, "Morphology and electro-optic properties of polymer-dispersed liquid-crystal films," Phys. Rev. E 55, 1646-1654 (1997).
    [CrossRef]
  9. B. M. Lacquet, P. L. Swart, and S. J. Spammer, "Polymer dispersed liquid crystal fiber optic electric field probe," IEEE Trans. Instrum. Meas. 46, 31-35 (1997).
    [CrossRef]
  10. F. Anagni, C. Bartoletti, U. Marchetti, L. Podesta, and G. Sacerdoti, "Optical sensors for electric substations: A voltage presence detector using a liquid crystal cell," IEEE Trans. Instrum. Meas. 43, 475-480 (1994).
    [CrossRef]
  11. S. Zumer, "Light scattering from nematic droplets: Anomalous-diffraction approach," Phys. Rev. A 37, 4006-4015 (1988).
    [CrossRef] [PubMed]
  12. H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, "Application of polymer dispersed liquid crystal (PDLC) nematic: Optical fiber variable attenuator," Mol. Cryst. Liq. Cryst. 404, 57-73 (2003).
    [CrossRef]
  13. P. Malik and K. K. Raina, "Droplet orientation and optical properties of polymer dispersed liquid crystal composite films," Opt. Mater. 27, 613-617 (2004).
    [CrossRef]
  14. C. D. Perciante and J. A. Ferrari, "Faraday current sensor with temperature monitoring," Appl. Opt. 44, 6910-6912 (2005).
    [CrossRef] [PubMed]
  15. Z. Li, J. R. Kelly, P. Palffy-Muhoray, and C. Rosenblatt, "Comparison of magnetic and electric field induced switching in polymer dispersed liquid crystal films," Appl. Phys. Lett. 60, 3132-3134 (1992).
    [CrossRef]

2005

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

C. D. Perciante and J. A. Ferrari, "Faraday current sensor with temperature monitoring," Appl. Opt. 44, 6910-6912 (2005).
[CrossRef] [PubMed]

2004

P. Malik and K. K. Raina, "Droplet orientation and optical properties of polymer dispersed liquid crystal composite films," Opt. Mater. 27, 613-617 (2004).
[CrossRef]

2003

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, "Application of polymer dispersed liquid crystal (PDLC) nematic: Optical fiber variable attenuator," Mol. Cryst. Liq. Cryst. 404, 57-73 (2003).
[CrossRef]

2002

J. Lanzo, F. P. Nicoletta, G. De Filpo, and G. Chidichimo, " From nematic emulsions to polymer dispersed liquid crystals," J. Appl. Phys. 92, 4271-4275 (2002).
[CrossRef]

C. Li and T. Yoshino, "Simultaneous measurement of current and voltage by use of one bismuth germanate crystal," Appl. Opt. 41, 5391-5397 (2002).
[CrossRef] [PubMed]

2001

V. P. Dick and V. A. Loiko, "Model for coherent transmittance calculation for polymer dispersed liquid crystal films," Liq. Crys. 28, 1193-1198 (2001).
[CrossRef]

Y. Li, C. Li, and T. Yoshino, "Optical electric-power-sensing system using Faraday and Pockels cells," Appl. Opt. 40, 5738-5741 (2001).
[CrossRef]

1998

Z. Wang, Y. Liao, S. Lai, H. Zhao, and X. Chen, "A novel method for simultaneous measurement of current and voltage using one low-birefringence fiber," Opt. Laser Technol. 30, 257-262 (1998).
[CrossRef]

1997

K. Amundson, A. van Blaaderen, and P. Wiltzius, "Morphology and electro-optic properties of polymer-dispersed liquid-crystal films," Phys. Rev. E 55, 1646-1654 (1997).
[CrossRef]

B. M. Lacquet, P. L. Swart, and S. J. Spammer, "Polymer dispersed liquid crystal fiber optic electric field probe," IEEE Trans. Instrum. Meas. 46, 31-35 (1997).
[CrossRef]

1994

F. Anagni, C. Bartoletti, U. Marchetti, L. Podesta, and G. Sacerdoti, "Optical sensors for electric substations: A voltage presence detector using a liquid crystal cell," IEEE Trans. Instrum. Meas. 43, 475-480 (1994).
[CrossRef]

1992

Z. Li, J. R. Kelly, P. Palffy-Muhoray, and C. Rosenblatt, "Comparison of magnetic and electric field induced switching in polymer dispersed liquid crystal films," Appl. Phys. Lett. 60, 3132-3134 (1992).
[CrossRef]

1988

S. Zumer, "Light scattering from nematic droplets: Anomalous-diffraction approach," Phys. Rev. A 37, 4006-4015 (1988).
[CrossRef] [PubMed]

1987

B.-G. Wu, J. L. West, and J. W. Doane, "Angular discrimination of light transmission through polymer-dispersed liquid-crystals films," J. Appl. Phys. 62, 3926-3931 (1987).

Amundson, K.

K. Amundson, A. van Blaaderen, and P. Wiltzius, "Morphology and electro-optic properties of polymer-dispersed liquid-crystal films," Phys. Rev. E 55, 1646-1654 (1997).
[CrossRef]

Anagni, F.

F. Anagni, C. Bartoletti, U. Marchetti, L. Podesta, and G. Sacerdoti, "Optical sensors for electric substations: A voltage presence detector using a liquid crystal cell," IEEE Trans. Instrum. Meas. 43, 475-480 (1994).
[CrossRef]

Bartoletti, C.

F. Anagni, C. Bartoletti, U. Marchetti, L. Podesta, and G. Sacerdoti, "Optical sensors for electric substations: A voltage presence detector using a liquid crystal cell," IEEE Trans. Instrum. Meas. 43, 475-480 (1994).
[CrossRef]

Chanclou, P.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, "Application of polymer dispersed liquid crystal (PDLC) nematic: Optical fiber variable attenuator," Mol. Cryst. Liq. Cryst. 404, 57-73 (2003).
[CrossRef]

Chen, X.

Z. Wang, Y. Liao, S. Lai, H. Zhao, and X. Chen, "A novel method for simultaneous measurement of current and voltage using one low-birefringence fiber," Opt. Laser Technol. 30, 257-262 (1998).
[CrossRef]

Chidichimo, G.

J. Lanzo, F. P. Nicoletta, G. De Filpo, and G. Chidichimo, " From nematic emulsions to polymer dispersed liquid crystals," J. Appl. Phys. 92, 4271-4275 (2002).
[CrossRef]

Cui, X.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

De Filpo, G.

J. Lanzo, F. P. Nicoletta, G. De Filpo, and G. Chidichimo, " From nematic emulsions to polymer dispersed liquid crystals," J. Appl. Phys. 92, 4271-4275 (2002).
[CrossRef]

Dick, V. P.

V. P. Dick and V. A. Loiko, "Model for coherent transmittance calculation for polymer dispersed liquid crystal films," Liq. Crys. 28, 1193-1198 (2001).
[CrossRef]

Doane, J. W.

B.-G. Wu, J. L. West, and J. W. Doane, "Angular discrimination of light transmission through polymer-dispersed liquid-crystals films," J. Appl. Phys. 62, 3926-3931 (1987).

Dupont, L.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, "Application of polymer dispersed liquid crystal (PDLC) nematic: Optical fiber variable attenuator," Mol. Cryst. Liq. Cryst. 404, 57-73 (2003).
[CrossRef]

Ferrari, J. A.

Kelly, J. R.

Z. Li, J. R. Kelly, P. Palffy-Muhoray, and C. Rosenblatt, "Comparison of magnetic and electric field induced switching in polymer dispersed liquid crystal films," Appl. Phys. Lett. 60, 3132-3134 (1992).
[CrossRef]

Lacquet, B. M.

B. M. Lacquet, P. L. Swart, and S. J. Spammer, "Polymer dispersed liquid crystal fiber optic electric field probe," IEEE Trans. Instrum. Meas. 46, 31-35 (1997).
[CrossRef]

Lai, S.

Z. Wang, Y. Liao, S. Lai, H. Zhao, and X. Chen, "A novel method for simultaneous measurement of current and voltage using one low-birefringence fiber," Opt. Laser Technol. 30, 257-262 (1998).
[CrossRef]

Lanzo, J.

J. Lanzo, F. P. Nicoletta, G. De Filpo, and G. Chidichimo, " From nematic emulsions to polymer dispersed liquid crystals," J. Appl. Phys. 92, 4271-4275 (2002).
[CrossRef]

Li, C.

Li, Y.

Li, Z.

Z. Li, J. R. Kelly, P. Palffy-Muhoray, and C. Rosenblatt, "Comparison of magnetic and electric field induced switching in polymer dispersed liquid crystal films," Appl. Phys. Lett. 60, 3132-3134 (1992).
[CrossRef]

Liao, Y.

Z. Wang, Y. Liao, S. Lai, H. Zhao, and X. Chen, "A novel method for simultaneous measurement of current and voltage using one low-birefringence fiber," Opt. Laser Technol. 30, 257-262 (1998).
[CrossRef]

Loiko, V. A.

V. P. Dick and V. A. Loiko, "Model for coherent transmittance calculation for polymer dispersed liquid crystal films," Liq. Crys. 28, 1193-1198 (2001).
[CrossRef]

Malik, P.

P. Malik and K. K. Raina, "Droplet orientation and optical properties of polymer dispersed liquid crystal composite films," Opt. Mater. 27, 613-617 (2004).
[CrossRef]

Marchetti, U.

F. Anagni, C. Bartoletti, U. Marchetti, L. Podesta, and G. Sacerdoti, "Optical sensors for electric substations: A voltage presence detector using a liquid crystal cell," IEEE Trans. Instrum. Meas. 43, 475-480 (1994).
[CrossRef]

Nicoletta, F. P.

J. Lanzo, F. P. Nicoletta, G. De Filpo, and G. Chidichimo, " From nematic emulsions to polymer dispersed liquid crystals," J. Appl. Phys. 92, 4271-4275 (2002).
[CrossRef]

Palffy-Muhoray, P.

Z. Li, J. R. Kelly, P. Palffy-Muhoray, and C. Rosenblatt, "Comparison of magnetic and electric field induced switching in polymer dispersed liquid crystal films," Appl. Phys. Lett. 60, 3132-3134 (1992).
[CrossRef]

Perciante, C. D.

Podesta, L.

F. Anagni, C. Bartoletti, U. Marchetti, L. Podesta, and G. Sacerdoti, "Optical sensors for electric substations: A voltage presence detector using a liquid crystal cell," IEEE Trans. Instrum. Meas. 43, 475-480 (1994).
[CrossRef]

Raina, K. K.

P. Malik and K. K. Raina, "Droplet orientation and optical properties of polymer dispersed liquid crystal composite films," Opt. Mater. 27, 613-617 (2004).
[CrossRef]

Ramanitra, H.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, "Application of polymer dispersed liquid crystal (PDLC) nematic: Optical fiber variable attenuator," Mol. Cryst. Liq. Cryst. 404, 57-73 (2003).
[CrossRef]

Rosenblatt, C.

Z. Li, J. R. Kelly, P. Palffy-Muhoray, and C. Rosenblatt, "Comparison of magnetic and electric field induced switching in polymer dispersed liquid crystal films," Appl. Phys. Lett. 60, 3132-3134 (1992).
[CrossRef]

Sacerdoti, G.

F. Anagni, C. Bartoletti, U. Marchetti, L. Podesta, and G. Sacerdoti, "Optical sensors for electric substations: A voltage presence detector using a liquid crystal cell," IEEE Trans. Instrum. Meas. 43, 475-480 (1994).
[CrossRef]

Spammer, S. J.

B. M. Lacquet, P. L. Swart, and S. J. Spammer, "Polymer dispersed liquid crystal fiber optic electric field probe," IEEE Trans. Instrum. Meas. 46, 31-35 (1997).
[CrossRef]

Swart, P. L.

B. M. Lacquet, P. L. Swart, and S. J. Spammer, "Polymer dispersed liquid crystal fiber optic electric field probe," IEEE Trans. Instrum. Meas. 46, 31-35 (1997).
[CrossRef]

van Blaaderen, A.

K. Amundson, A. van Blaaderen, and P. Wiltzius, "Morphology and electro-optic properties of polymer-dispersed liquid-crystal films," Phys. Rev. E 55, 1646-1654 (1997).
[CrossRef]

Vinouze, B.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, "Application of polymer dispersed liquid crystal (PDLC) nematic: Optical fiber variable attenuator," Mol. Cryst. Liq. Cryst. 404, 57-73 (2003).
[CrossRef]

Wang, Z.

Z. Wang, Y. Liao, S. Lai, H. Zhao, and X. Chen, "A novel method for simultaneous measurement of current and voltage using one low-birefringence fiber," Opt. Laser Technol. 30, 257-262 (1998).
[CrossRef]

West, J. L.

B.-G. Wu, J. L. West, and J. W. Doane, "Angular discrimination of light transmission through polymer-dispersed liquid-crystals films," J. Appl. Phys. 62, 3926-3931 (1987).

Wiltzius, P.

K. Amundson, A. van Blaaderen, and P. Wiltzius, "Morphology and electro-optic properties of polymer-dispersed liquid-crystal films," Phys. Rev. E 55, 1646-1654 (1997).
[CrossRef]

Wu, B.-G.

B.-G. Wu, J. L. West, and J. W. Doane, "Angular discrimination of light transmission through polymer-dispersed liquid-crystals films," J. Appl. Phys. 62, 3926-3931 (1987).

Yamaguchi, I.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Yokota, M.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Yoshino, T.

Zhao, H.

Z. Wang, Y. Liao, S. Lai, H. Zhao, and X. Chen, "A novel method for simultaneous measurement of current and voltage using one low-birefringence fiber," Opt. Laser Technol. 30, 257-262 (1998).
[CrossRef]

Zumer, S.

S. Zumer, "Light scattering from nematic droplets: Anomalous-diffraction approach," Phys. Rev. A 37, 4006-4015 (1988).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Z. Li, J. R. Kelly, P. Palffy-Muhoray, and C. Rosenblatt, "Comparison of magnetic and electric field induced switching in polymer dispersed liquid crystal films," Appl. Phys. Lett. 60, 3132-3134 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

B. M. Lacquet, P. L. Swart, and S. J. Spammer, "Polymer dispersed liquid crystal fiber optic electric field probe," IEEE Trans. Instrum. Meas. 46, 31-35 (1997).
[CrossRef]

F. Anagni, C. Bartoletti, U. Marchetti, L. Podesta, and G. Sacerdoti, "Optical sensors for electric substations: A voltage presence detector using a liquid crystal cell," IEEE Trans. Instrum. Meas. 43, 475-480 (1994).
[CrossRef]

J. Appl. Phys.

J. Lanzo, F. P. Nicoletta, G. De Filpo, and G. Chidichimo, " From nematic emulsions to polymer dispersed liquid crystals," J. Appl. Phys. 92, 4271-4275 (2002).
[CrossRef]

B.-G. Wu, J. L. West, and J. W. Doane, "Angular discrimination of light transmission through polymer-dispersed liquid-crystals films," J. Appl. Phys. 62, 3926-3931 (1987).

Liq. Crys.

V. P. Dick and V. A. Loiko, "Model for coherent transmittance calculation for polymer dispersed liquid crystal films," Liq. Crys. 28, 1193-1198 (2001).
[CrossRef]

Mol. Cryst. Liq. Cryst.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, "Application of polymer dispersed liquid crystal (PDLC) nematic: Optical fiber variable attenuator," Mol. Cryst. Liq. Cryst. 404, 57-73 (2003).
[CrossRef]

Opt. Laser Technol.

Z. Wang, Y. Liao, S. Lai, H. Zhao, and X. Chen, "A novel method for simultaneous measurement of current and voltage using one low-birefringence fiber," Opt. Laser Technol. 30, 257-262 (1998).
[CrossRef]

Opt. Mater.

P. Malik and K. K. Raina, "Droplet orientation and optical properties of polymer dispersed liquid crystal composite films," Opt. Mater. 27, 613-617 (2004).
[CrossRef]

Phys. Rev. A

S. Zumer, "Light scattering from nematic droplets: Anomalous-diffraction approach," Phys. Rev. A 37, 4006-4015 (1988).
[CrossRef] [PubMed]

Phys. Rev. E

K. Amundson, A. van Blaaderen, and P. Wiltzius, "Morphology and electro-optic properties of polymer-dispersed liquid-crystal films," Phys. Rev. E 55, 1646-1654 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical behavior of the transmittance (τ) as function of the normalized voltage (V∕Vp ). We choose the representative values τ 0 = 0.05 and τ = 1.

Fig. 2
Fig. 2

Proposed setup:L, gradient-index lens; V offset, DC offset required for linearizing the sensor response; V AC, AC voltage to be measured.

Fig. 3
Fig. 3

Modified PDLC voltage sensor with temperature monitoring: P, polarizer; WP, a wave plate with its fast axis at 45° with respect to the polarization direction; W, a Wollaston prism with its principal directions parallel and orthogonal to the direction of transmission of P; D1,2, photodetectors.

Fig. 4
Fig. 4

(a) LC droplets dispersed in the polymer matrix when no voltage is applied, (b) PDLC sample for V offset = 40 V. The cylindrical structures of irregular lengths clearly visible in this image are the fiber spacers.

Fig. 5
Fig. 5

Transmittance changes ( I f 0 / I DC ) vs. applied AC amplitudes (V 0) for temperatures in the range 15 °C–30 °C.

Fig. 6
Fig. 6

Transmittance changes ( I f 0 / I DC ) vs. light-source-intensity levels. The applied AC voltage and the temperature are maintained constant during this experiment.

Fig. 7
Fig. 7

PDLC response when (a) a DC offset voltage (40 V) is suddenly connected, (b) the DC offset voltage is suddenly disconnected, (c) a square AC voltage (V 0 = 5 V) superimposed on the DC offset is applied.

Fig. 8
Fig. 8

Behavior of the transmittance curve with the temperature (see, e.g., Ref. 13, Fig. 3).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( V ) = I 0 exp [ χ σ scatt d ] ,
τ τ Δ n = 0 + d τ d ( Δ n ) | Δ n = 0 Δ n + .
n eff ( V ) = n 0 + n 1 exp [ ( V / V p ) 2 ] ,
τ τ Δ n = 0 + d τ d ( Δ n ) | Δ n = 0 n 1 exp [ ( V / V p ) 2 ] ,
τ τ 0 + ( τ τ 0 ) { 1 exp [ ( V / V p ) 2 ] } ,
τ 0 = τ Δ n = 0 + d τ d ( Δ n ) | Δ n = 0 n 1
τ ( V ) τ 1 + τ 2 V AC ,
I ( V AC ) = I 0 τ
I 0 ( τ 1 + τ 2 V AC ) .
V AC ( t ) = V 0 cos ( 2 π f 0 t + ϕ 0 ) + higher   odd   harmonics ,
I ( t ) I 0 [ τ 1 + τ 2 V 0 cos ( 2 π f 0 t + ϕ 0 ) + higher   harmonics ] .
I DC = I 0 τ 1 ,
I f 0 = I 0 τ 2 V 0 .
I f 0 I DC = ( τ 2 / τ 1 ) V 0
I f 0 ( T ) I DC ( T ) < I f 0 ( T + Δ T ) I DC ( T + Δ T ) ,

Metrics