Abstract

A novel imaging spectrometer can individually control spatial and spectral resolution by using zoom lenses as the foreoptics of the system and a focusing lens. By varying the focal length we can use the focusing lens to change the spatial and spectral dimensions; with the foreoptics, however, we can change only the spatial dimension. Therefore the spectral resolution and the spectral range are affected by the zoom ratio of the focusing lens, whereas the spatial resolution and the field of view are affected by the multiplication of the zoom ratios of the foreoptics and the focusing lens. By properly combining two zoom ratios, we can control the spectral resolution with a fixed spatial resolution or the spatial resolution with a fixed spectral resolution. For an imaging spectrometer with this novel zooming function, we used the lens module method and third-order aberration theory to design an initial four-group zoom system with an external entrance pupil for the focusing lens. Furthermore, using the optical design software CODE V, we obtained an optimized zoom lens with a focal-length range of 50 to 150  mm. Finally, the zoom system with its transmission grating in the Littrow configuration performs satisfactorily as the focusing lens of an imaging spectrometer in the wavelength range 450–900 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).
  2. A. F. H. Goetz, J. B. Wellman, and W. L. Barnes, "Optical remote sensing of the Earth," Proc. IEEE 73, 950-969 (1985).
  3. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
    [CrossRef]
  4. C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, "Application of hyperspectral imaging spectrometer systems to industrial inspection," in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M.R.Descour, K.G.Harding, and D.J.Svetkoff, eds., Proc. SPIE 2599, 264-272 (1996).
  5. F. D. Van Der Meer and S. M. De Jong, Imaging Spectrometry (Kluwer Academic, 2001).
  6. J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).
  7. P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
    [CrossRef]
  8. M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).
  9. C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," Opt. Express 10, 210-221 (2002).
  10. J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
    [CrossRef]
  11. M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004).
    [CrossRef]
  12. G. Ulbrich, R. Meynart, and J. Nieke, "APEX—airborne prism experiment: the realization phase of an airborne hyperspectral imager," in Sensors, Systems, and Next-Generation Satellites VIII, R.Meynart, S.P.Neeck, and H.Shimoda, eds., Proc. SPIE 5570, 453-459 (2004).
  13. D. Lobb, "Design of a spectrometer system for measurement on Earth atmosphere from geostationary orbit," in Optical Design and Engineering, L.Mazuray, P.J.Rogers, and R.Wartmann, eds., Proc. SPIE 5249, 191-202 (2004).
  14. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, "Demonstration of a high-speed nonscanning imaging spectrometer," Opt. Lett. 22, 1271-1273 (1997).
  15. C. Feng and A. Ahmad, "Design and modeling of a compact imaging spectrometer," Opt. Eng. 34, 3217-3220 (1995).
    [CrossRef]
  16. T. Vaarala, M. Aikio, and H. Keranen, "Advanced prism-grating-prism imaging spectrograph in online industrial applications," in New Image Processing Techniques and Applications: Algorithms, Methods, and Components II, P.Réfrégier and R.-J.Ahlers, eds., Proc. SPIE 3101, 322-330 (1997).
  17. R. G. Sellar and G. D. Boreman, "Classification of imaging spectrometers for remote sensing applications," Opt. Eng. 44, 013602 (2005).
    [CrossRef]
  18. R. G. Sellar and G. D. Boreman, "Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer," Appl. Opt. 44, 1614-1624 (2005).
    [CrossRef]
  19. K. H. Elliott, "A novel zoom-lens spectrograph for a small astronomical telescope," Mon. Not. R. Astron. Soc. 281, 158-162 (1996).
  20. Scientific Imaging Technologies (SITe), http://www.site-inc.com.
  21. S. C. Park and R. R. Shannon, "Zoom lens design using lens modules," Opt. Eng. 35, 1668-1675 (1996).
    [CrossRef]
  22. Optical Research Associates, "CODE V Reference Manual, Version 9.40" (Optical Research Associates, Pasadena, Calif., 2003).
  23. H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, 1950).
  24. H. H. Hopkins and V. V. Rao, "The systematic design of two-component objectives," Opt. Acta. 17, 497-514 (1970).
  25. J. Tesar, "Using small glass catalogs," Opt. Eng. 39, 1816-1821 (2000).
    [CrossRef]
  26. R. Kingslake, Lens Design Fundamentals (Academic, 1978).
  27. Schott, Glass http://www.schott.com.
  28. W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, 1974).
  29. Y. Matsui, "Use of calcium fluoride for zoom lenses of high quality for cinematography and television," J. SMPTE 80, 22-24 (1971).
  30. M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
    [CrossRef]
  31. P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

2005 (3)

R. G. Sellar and G. D. Boreman, "Classification of imaging spectrometers for remote sensing applications," Opt. Eng. 44, 013602 (2005).
[CrossRef]

R. G. Sellar and G. D. Boreman, "Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer," Appl. Opt. 44, 1614-1624 (2005).
[CrossRef]

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

2004 (3)

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004).
[CrossRef]

G. Ulbrich, R. Meynart, and J. Nieke, "APEX—airborne prism experiment: the realization phase of an airborne hyperspectral imager," in Sensors, Systems, and Next-Generation Satellites VIII, R.Meynart, S.P.Neeck, and H.Shimoda, eds., Proc. SPIE 5570, 453-459 (2004).

D. Lobb, "Design of a spectrometer system for measurement on Earth atmosphere from geostationary orbit," in Optical Design and Engineering, L.Mazuray, P.J.Rogers, and R.Wartmann, eds., Proc. SPIE 5249, 191-202 (2004).

2003 (2)

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
[CrossRef]

Optical Research Associates, "CODE V Reference Manual, Version 9.40" (Optical Research Associates, Pasadena, Calif., 2003).

2002 (2)

M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," Opt. Express 10, 210-221 (2002).

2001 (1)

F. D. Van Der Meer and S. M. De Jong, Imaging Spectrometry (Kluwer Academic, 2001).

2000 (3)

P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
[CrossRef]

J. Tesar, "Using small glass catalogs," Opt. Eng. 39, 1816-1821 (2000).
[CrossRef]

P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

1998 (2)

J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

1997 (2)

M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, "Demonstration of a high-speed nonscanning imaging spectrometer," Opt. Lett. 22, 1271-1273 (1997).

T. Vaarala, M. Aikio, and H. Keranen, "Advanced prism-grating-prism imaging spectrograph in online industrial applications," in New Image Processing Techniques and Applications: Algorithms, Methods, and Components II, P.Réfrégier and R.-J.Ahlers, eds., Proc. SPIE 3101, 322-330 (1997).

1996 (3)

K. H. Elliott, "A novel zoom-lens spectrograph for a small astronomical telescope," Mon. Not. R. Astron. Soc. 281, 158-162 (1996).

S. C. Park and R. R. Shannon, "Zoom lens design using lens modules," Opt. Eng. 35, 1668-1675 (1996).
[CrossRef]

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, "Application of hyperspectral imaging spectrometer systems to industrial inspection," in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M.R.Descour, K.G.Harding, and D.J.Svetkoff, eds., Proc. SPIE 2599, 264-272 (1996).

1995 (1)

C. Feng and A. Ahmad, "Design and modeling of a compact imaging spectrometer," Opt. Eng. 34, 3217-3220 (1995).
[CrossRef]

1985 (2)

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).

A. F. H. Goetz, J. B. Wellman, and W. L. Barnes, "Optical remote sensing of the Earth," Proc. IEEE 73, 950-969 (1985).

1978 (1)

R. Kingslake, Lens Design Fundamentals (Academic, 1978).

1974 (1)

W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, 1974).

1971 (1)

Y. Matsui, "Use of calcium fluoride for zoom lenses of high quality for cinematography and television," J. SMPTE 80, 22-24 (1971).

1970 (1)

H. H. Hopkins and V. V. Rao, "The systematic design of two-component objectives," Opt. Acta. 17, 497-514 (1970).

1950 (1)

H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, 1950).

Ahmad, A.

C. Feng and A. Ahmad, "Design and modeling of a compact imaging spectrometer," Opt. Eng. 34, 3217-3220 (1995).
[CrossRef]

Aikio, M.

T. Vaarala, M. Aikio, and H. Keranen, "Advanced prism-grating-prism imaging spectrograph in online industrial applications," in New Image Processing Techniques and Applications: Algorithms, Methods, and Components II, P.Réfrégier and R.-J.Ahlers, eds., Proc. SPIE 3101, 322-330 (1997).

Antoniades, J.

J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Barnes, W. L.

A. F. H. Goetz, J. B. Wellman, and W. L. Barnes, "Optical remote sensing of the Earth," Proc. IEEE 73, 950-969 (1985).

Barnsley, M. J.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004).
[CrossRef]

Barry, P. S.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
[CrossRef]

Bauer, S.-M.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Baumback, M.

J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).

Becker, T.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Beiso, D.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
[CrossRef]

Bissett, W. P.

Böhm, P.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Boreman, G. D.

R. G. Sellar and G. D. Boreman, "Classification of imaging spectrometers for remote sensing applications," Opt. Eng. 44, 013602 (2005).
[CrossRef]

R. G. Sellar and G. D. Boreman, "Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer," Appl. Opt. 44, 1614-1624 (2005).
[CrossRef]

Bowles, J.

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," Opt. Express 10, 210-221 (2002).

J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).

Carman, S. L.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
[CrossRef]

Chen, W.

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Chrien, T. G.

P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Christensen, L.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Cutter, M. A.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004).
[CrossRef]

Davis, C. O.

De Jong, S. M.

F. D. Van Der Meer and S. M. De Jong, Imaging Spectrometry (Kluwer Academic, 2001).

Dereniak, E. L.

Descour, M. R.

Dionies, F.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Downes, T. V.

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Elliott, K. H.

K. H. Elliott, "A novel zoom-lens spectrograph for a small astronomical telescope," Mon. Not. R. Astron. Soc. 281, 158-162 (1996).

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Fechner, T.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Feng, C.

C. Feng and A. Ahmad, "Design and modeling of a compact imaging spectrometer," Opt. Eng. 34, 3217-3220 (1995).
[CrossRef]

Figueroa, M. A.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, "Application of hyperspectral imaging spectrometer systems to industrial inspection," in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M.R.Descour, K.G.Harding, and D.J.Svetkoff, eds., Proc. SPIE 2599, 264-272 (1996).

Fisher, J.

C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," Opt. Express 10, 210-221 (2002).

J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).

Folkman, M. A.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, "Application of hyperspectral imaging spectrometer systems to industrial inspection," in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M.R.Descour, K.G.Harding, and D.J.Svetkoff, eds., Proc. SPIE 2599, 264-272 (1996).

Goetz, A. F. H.

A. F. H. Goetz, J. B. Wellman, and W. L. Barnes, "Optical remote sensing of the Earth," Proc. IEEE 73, 950-969 (1985).

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).

Green, R. O.

P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Grossman, J.

J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).

Hahn, T.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Hopkins, H. H.

H. H. Hopkins and V. V. Rao, "The systematic design of two-component objectives," Opt. Acta. 17, 497-514 (1970).

H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, 1950).

Jim, K. T. C.

M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).

Kelz, A.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Keranen, H.

T. Vaarala, M. Aikio, and H. Keranen, "Advanced prism-grating-prism imaging spectrograph in online industrial applications," in New Image Processing Techniques and Applications: Algorithms, Methods, and Components II, P.Réfrégier and R.-J.Ahlers, eds., Proc. SPIE 3101, 322-330 (1997).

Kingslake, R.

R. Kingslake, Lens Design Fundamentals (Academic, 1978).

Korwan, D.

Leathers, R. A.

Lobb, D.

D. Lobb, "Design of a spectrometer system for measurement on Earth atmosphere from geostationary orbit," in Optical Design and Engineering, L.Mazuray, P.J.Rogers, and R.Wartmann, eds., Proc. SPIE 5249, 191-202 (2004).

Lobb, D. R.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004).
[CrossRef]

Maker, P. D.

Matsui, Y.

Y. Matsui, "Use of calcium fluoride for zoom lenses of high quality for cinematography and television," J. SMPTE 80, 22-24 (1971).

McKerns, M. M.

P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
[CrossRef]

Meynart, R.

G. Ulbrich, R. Meynart, and J. Nieke, "APEX—airborne prism experiment: the realization phase of an airborne hyperspectral imager," in Sensors, Systems, and Next-Generation Satellites VIII, R.Meynart, S.P.Neeck, and H.Shimoda, eds., Proc. SPIE 5570, 453-459 (2004).

Mouroulis, P.

P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
[CrossRef]

P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

Nieke, J.

G. Ulbrich, R. Meynart, and J. Nieke, "APEX—airborne prism experiment: the realization phase of an airborne hyperspectral imager," in Sensors, Systems, and Next-Generation Satellites VIII, R.Meynart, S.P.Neeck, and H.Shimoda, eds., Proc. SPIE 5570, 453-459 (2004).

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Park, S. C.

S. C. Park and R. R. Shannon, "Zoom lens design using lens modules," Opt. Eng. 35, 1668-1675 (1996).
[CrossRef]

Paschke, J.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Pearlman, J. S.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
[CrossRef]

Pfeiffer, J.

M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).

Popow, E.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Rao, V. V.

H. H. Hopkins and V. V. Rao, "The systematic design of two-component objectives," Opt. Acta. 17, 497-514 (1970).

Reisse, R. A.

Rhea, W. J.

Rock, B. N.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).

Roth, M. M.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Schumacher, A. B.

Segal, C. C.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
[CrossRef]

Sellar, R. G.

R. G. Sellar and G. D. Boreman, "Classification of imaging spectrometers for remote sensing applications," Opt. Eng. 44, 013602 (2005).
[CrossRef]

R. G. Sellar and G. D. Boreman, "Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer," Appl. Opt. 44, 1614-1624 (2005).
[CrossRef]

Settle, J. J.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004).
[CrossRef]

Shannon, R. R.

S. C. Park and R. R. Shannon, "Zoom lens design using lens modules," Opt. Eng. 35, 1668-1675 (1996).
[CrossRef]

Shepanski, J.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
[CrossRef]

Snyder, W. A.

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Solomon, J. E.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).

Sparks, A.

M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).

Tesar, J.

J. Tesar, "Using small glass catalogs," Opt. Eng. 39, 1816-1821 (2000).
[CrossRef]

Teston, F.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004).
[CrossRef]

Thome, K. J.

Topping, M.

M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).

Ulbrich, G.

G. Ulbrich, R. Meynart, and J. Nieke, "APEX—airborne prism experiment: the realization phase of an airborne hyperspectral imager," in Sensors, Systems, and Next-Generation Satellites VIII, R.Meynart, S.P.Neeck, and H.Shimoda, eds., Proc. SPIE 5570, 453-459 (2004).

Vaarala, T.

T. Vaarala, M. Aikio, and H. Keranen, "Advanced prism-grating-prism imaging spectrograph in online industrial applications," in New Image Processing Techniques and Applications: Algorithms, Methods, and Components II, P.Réfrégier and R.-J.Ahlers, eds., Proc. SPIE 3101, 322-330 (1997).

Van Der Meer, F. D.

F. D. Van Der Meer and S. M. De Jong, Imaging Spectrometry (Kluwer Academic, 2001).

Vane, G.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).

Volin, C. E.

Welford, W. T.

W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, 1974).

Wellman, J. B.

A. F. H. Goetz, J. B. Wellman, and W. L. Barnes, "Optical remote sensing of the Earth," Proc. IEEE 73, 950-969 (1985).

Williams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Willoughby, C. T.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, "Application of hyperspectral imaging spectrometer systems to industrial inspection," in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M.R.Descour, K.G.Harding, and D.J.Svetkoff, eds., Proc. SPIE 2599, 264-272 (1996).

Wilson, D. W.

Wolter, D.

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Yoon, D.

M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sens. (2)

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003).
[CrossRef]

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004).
[CrossRef]

J. SMPTE (1)

Y. Matsui, "Use of calcium fluoride for zoom lenses of high quality for cinematography and television," J. SMPTE 80, 22-24 (1971).

Mon. Not. R. Astron. Soc. (1)

K. H. Elliott, "A novel zoom-lens spectrograph for a small astronomical telescope," Mon. Not. R. Astron. Soc. 281, 158-162 (1996).

Opt. Acta. (1)

H. H. Hopkins and V. V. Rao, "The systematic design of two-component objectives," Opt. Acta. 17, 497-514 (1970).

Opt. Eng. (5)

J. Tesar, "Using small glass catalogs," Opt. Eng. 39, 1816-1821 (2000).
[CrossRef]

S. C. Park and R. R. Shannon, "Zoom lens design using lens modules," Opt. Eng. 35, 1668-1675 (1996).
[CrossRef]

C. Feng and A. Ahmad, "Design and modeling of a compact imaging spectrometer," Opt. Eng. 34, 3217-3220 (1995).
[CrossRef]

R. G. Sellar and G. D. Boreman, "Classification of imaging spectrometers for remote sensing applications," Opt. Eng. 44, 013602 (2005).
[CrossRef]

P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

A. F. H. Goetz, J. B. Wellman, and W. L. Barnes, "Optical remote sensing of the Earth," Proc. IEEE 73, 950-969 (1985).

Publ. Astron. Soc. Pac. (1)

M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005).
[CrossRef]

Remote Sens. Environ. (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Science (1)

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).

Other (13)

M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, "Application of hyperspectral imaging spectrometer systems to industrial inspection," in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M.R.Descour, K.G.Harding, and D.J.Svetkoff, eds., Proc. SPIE 2599, 264-272 (1996).

F. D. Van Der Meer and S. M. De Jong, Imaging Spectrometry (Kluwer Academic, 2001).

J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).

T. Vaarala, M. Aikio, and H. Keranen, "Advanced prism-grating-prism imaging spectrograph in online industrial applications," in New Image Processing Techniques and Applications: Algorithms, Methods, and Components II, P.Réfrégier and R.-J.Ahlers, eds., Proc. SPIE 3101, 322-330 (1997).

G. Ulbrich, R. Meynart, and J. Nieke, "APEX—airborne prism experiment: the realization phase of an airborne hyperspectral imager," in Sensors, Systems, and Next-Generation Satellites VIII, R.Meynart, S.P.Neeck, and H.Shimoda, eds., Proc. SPIE 5570, 453-459 (2004).

D. Lobb, "Design of a spectrometer system for measurement on Earth atmosphere from geostationary orbit," in Optical Design and Engineering, L.Mazuray, P.J.Rogers, and R.Wartmann, eds., Proc. SPIE 5249, 191-202 (2004).

Optical Research Associates, "CODE V Reference Manual, Version 9.40" (Optical Research Associates, Pasadena, Calif., 2003).

H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, 1950).

Scientific Imaging Technologies (SITe), http://www.site-inc.com.

R. Kingslake, Lens Design Fundamentals (Academic, 1978).

Schott, Glass http://www.schott.com.

W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic diagram of a typical dispersive-pushbroom imaging spectrometer.

Fig. 2
Fig. 2

Optimized zoom system consisting of four lens modules with P-N–P-N arrangement.

Fig. 3
Fig. 3

Optimized zoom system consisting of four lens modules with N-P–P-P arrangement.

Fig. 4
Fig. 4

Layout of the P-N–P-N zoom system obtained by the transformation from the lens module to the thick lens.

Fig. 5
Fig. 5

Layout of the N-P–P-P zoom system obtained by the transformation from the lens module to the thick lens.

Fig. 6
Fig. 6

Layout of the optimized P-N–P-N zoom system with specific requirements (entrance pupil diameter, 20 mm; image size, 10 mm; wavelength range, 450–900 nm).

Fig. 7
Fig. 7

Layout of the optimized N-P–P-P zoom system with specific requirements (entrance pupil diameter, 20 mm; image size, 10 mm; wavelength range, 450–900 nm).

Fig. 8
Fig. 8

Spot diagrams of optimized (a) P-N–P-N and (b) N-P–P-P zoom systems.

Fig. 9
Fig. 9

Layout of the optimized N-P–P-P zoom system with two CaF2 elements and two aspheric surfaces.

Fig. 10
Fig. 10

Spot diagrams of the optimized N-P–P-P zoom system with two CaF2 elements and two aspheric surfaces at positions (a) 1, (b) 2, and (c) 3. The squares represent the pixel size of the detector.

Fig. 11
Fig. 11

Layout of the optimized zoom system with a dispersion element as the focusing lens in the imaging spectrometer.

Fig. 12
Fig. 12

Distortion of the zoom lens with a dispersion element. The symbols and lighter lines represent the positions of the principal rays for each field and wavelength of position 1 (effective focal length, 50 mm) on the detector. The darker grid is the image plane map with zero distortion.

Fig. 13
Fig. 13

Distortion of the designed zoom lens with a dispersion element. The symbols and lighter lines represent the positions of the principal rays for each field and wavelength of position 2 (effective focal length, 100 mm) on the detector. The darker grid is the image plane map with zero distortion.

Fig. 14
Fig. 14

Distortion of the zoom lens with a dispersion element. The symbols and lighter lines represent the positions of the principal rays for each field and wavelength of position 3 (effective focal length, 150 mm) on the detector. The darker grid is the image plane map with zero distortion.

Fig. 15
Fig. 15

Spot diagrams of the zoom system with a dispersion element for each field and wavelength of position 1 (effective focal length, 50 mm) on the detector. The square figure represents the pixel size of the detector.

Fig. 16
Fig. 16

Spot diagrams of the designed zoom system with a dispersion element for each field and wavelength of position 2 (effective focal length, 100 mm) on the detector. The square represents the pixel size of the detector.

Fig. 17
Fig. 17

Spot diagrams of the zoom system with a dispersion element for each field and wavelength of position 3 (effective focal length, 150 mm) on the detector. The square represents the pixel size of the detector.

Tables (10)

Tables Icon

Table 1 Zoom Ratios of Foreoptics and Focusing Lens, and Resultant Wavelength Range Δλ and FOV of the Imaging Spectrometer

Tables Icon

Table 2 Specifications of the Imaging Spectrometer Described in This Paper

Tables Icon

Table 3 Descriptions of the Lens Modules with a P-N–P-N Arrangement (millimeters)

Tables Icon

Table 4 Descriptions of the Lens Modules with a N-P–P-P Arrangement (millimeters)

Tables Icon

Table 5 Design Data of the P-N–P-N Zoom System Obtained from the Thick Lens Transformation a

Tables Icon

Table 6 Design Data of the N-P–P-P Zoom System Obtained from the Thick Lenses Transformation a

Tables Icon

Table 7 Design Data Optimized from the P-N–P-N Zoom System of Table 5 with Specific Requirements a

Tables Icon

Table 8 Design Data Optimized from the N-P–P-P Zoom System of Table 6 with Specific Requirements a

Tables Icon

Table 9 Design Data Optimized from the N-P–P-P Zoom System of Table 8 with Two CaF2 Elements and Two Aspheric Surfaces a

Tables Icon

Table 10 Design Data of the Zoom System with a Dispersion Element a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S I = i ( n i I i ) 2 h i ( u i n i u i 1 n i 1 ) ,
S II = i ( n i I i ) ( n i I ¯ i ) h i ( u i n i u i 1 n i 1 ) ,
S III = i ( n i I ¯ i ) 2 h i ( u i n i u i 1 n i 1 ) ,
C L = i ( n i I i ) h i ( n sh , i n l , i n i n sh , i 1 n l , i 1 n i 1 ) ,
n i + 1 u i + 1 = n i u i + ( n i n i + 1 ) h i + 1 c i + 1 ,
h i + 1 = h i + d i u i ,
n i I i = n i u i + n i h i c i .
n i + 1 u i + 1 ¯ = n i u ¯ i + ( n i n i + 1 ) h i + 1 ¯ c i + 1 ,
h i + 1 ¯ = h ¯ i + d i u ¯ i ,
n i I ¯ i = n i u ¯ i + n i h ¯ i c i .
z = c r 2 1 + [ 1 ( 1 + k ) c 2 r 2 ] 1 / 2 + A 4 r 4 + A 6 r 6 + A 8 r 8 + A 10 r 10 + A 12 r 12 + ,

Metrics